Brain-targeted delivery of various drugs can be successfully achieved by chemical delivery systems (CDS) that contain a 1,4-dihydropyridine-based redox targetor moiety and undergo a sequential metabolism. However, the susceptibility of this moiety toward hydration in acidic media may limit the shelf-life of such compounds in aqueous formulation. Here, a systematic investigation of the chemical stability toward oxidation and hydration of ester and amide derivatives of 3-substituted 1,4-dihydropyridine, 1,4-dihydroquinoline, and 4-substituted 1,2-dihydroisoquinoline is reported, together with the in vitro stability and in vivo (rat) distribution of isoquinoline-based testosterone and hydrocortisone chemical delivery systems, which were selected as having the most suitable acid-resistant targetor moieties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10611860290007540 | DOI Listing |
FEBS Open Bio
January 2025
Sunny BioDiscovery Inc., Santa Paula, CA, USA.
Dimethyl fumarate (DMF) is an anti-inflammatory and immunoregulatory medication used to treat multiple sclerosis (MS) and psoriasis. Its skin sensitization property precludes its topical use, which is unfortunate for the treatment of psoriasis. Isosorbide di-(methyl fumarate) (IDMF), a novel derivative of DMF, was synthesized to circumvent this adverse reaction and unlock the potential of topical delivery, which could be useful for treating psoriasis in the subpopulation of psoriatic MS patients, as well as in the general population.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.
View Article and Find Full Text PDFTopical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!