Annexin VI (AnxVI) of molecular mass 68-70 kDa belongs to a multigenic family of ubiquitous Ca2+- and phospholipid-binding proteins. In this report, we describe the GTP-binding properties of porcine liver AnxVI, determined with a fluorescent GTP analogue, 2'-(or 3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP). The optimal binding of TNP-GTP to AnxVI was observed in the presence of Ca2+ and asolectin liposomes, as evidenced by a 5.5-fold increase of TNP-GTP fluorescence and a concomitant blue shift (by 17 nm) of its maximal emission wavelength. Titration of AnxVI with TNP-GTP resulted in the determination of the dissociation constant (Kd) and binding stoichiometry that amounted to 1.3 microM and 1:1 TNP-GTP/AnxVI, mole/mole, respectively. In addition, the intrinsic fluorescence of the membrane-bound form of AnxVI was quenched by TNP-GTP and this was accompanied by fluorescence resonance energy transfer (FRET) from AnxVI Trp residues to TNP-GTP. This indicates that the GTP-binding site within the AnxVI molecule is probably located in the vicinity of a Trp-containing domain of the protein. By controlled proteolysis of human recombinant AnxVI, followed by purification of the proteolytic fragments by affinity chromatography on GTP-agarose, we isolated a 35 kDa fragment corresponding to the N-terminal half of AnxVI containing Trp192. On the basis of these results, we suggest that AnxVI is a GTP-binding protein and the binding of the nucleotide may have a regulatory impact on the interaction of annexin with membranes, e.g. formation of ion channels by the protein.

Download full-text PDF

Source

Publication Analysis

Top Keywords

anxvi
10
gtp-binding properties
8
membrane-bound form
8
porcine liver
8
tnp-gtp
6
gtp-binding
4
properties membrane-bound
4
form porcine
4
liver annexin
4
annexin annexin
4

Similar Publications

Annexin VI regulation of cardiac function.

Biochem Biophys Res Commun

October 2004

Genome Research Institute, University of Cincinnati College of Medicine, 2180 E. Galbraith Road, Cincinnati, OH 45237, USA.

Annexins are a family of membrane binding proteins that are characterized by a hypervariable amino terminus followed by a series of highly conserved Ca2+-phospholipid binding domains. Annexins function by binding to anionic phospholipid surfaces in a Ca2+-dependent manner. They self-associate to form trimers which further assemble into sheets that cover the membrane surface and alter properties such as fluidity and permeability.

View Article and Find Full Text PDF

Annexin VI (AnxVI) of molecular mass 68-70 kDa belongs to a multigenic family of ubiquitous Ca2+- and phospholipid-binding proteins. In this report, we describe the GTP-binding properties of porcine liver AnxVI, determined with a fluorescent GTP analogue, 2'-(or 3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP). The optimal binding of TNP-GTP to AnxVI was observed in the presence of Ca2+ and asolectin liposomes, as evidenced by a 5.

View Article and Find Full Text PDF

Annexin VI (AnxVI) formed ion channels in planar lipid bilayers that were induced by the addition of millimolar guanosine 5'-triphosphate (GTP) at pH 7.4 and that were not accompanied by a penetration of the protein into the membrane hydrophobic region. GTP-influenced interactions of AnxVI with Ca2+/liposomes produced small structural alterations as revealed by circular dichroism and infrared spectroscopies.

View Article and Find Full Text PDF

Human recombinant annexin VI (AnxVI) or its N- (AnxVIA) and C-terminal (AnxVIB) fragments were expressed in E. coli. Their ability to form voltage-dependent ion channels in membranes, induced by low pH, was measured to verify the hypothesis that, upon acidification, the hydrophobicity of AnxVI at a specific domain significantly increases allowing the AnxVI interaction with lipids in a Ca(2+)-independent manner.

View Article and Find Full Text PDF

Acidic pH-induced folding of annexin (Anx)VI in solution was investigated in order to study the mechanism of formation of ion channels by the protein in membranes. Using 2-(p-toluidino)naphthalene-6-sulfonic acid as a hydrophobic probe, it was demonstrated that AnxVI exerts a large change in hydrophobicity at acidic pH. Moreover, circular dichroism spectra indicated that the native state of AnxVI changes at acidic pH towards a state characterized by a significant loss of alpha-helix content and appearance of new beta-structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!