AI Article Synopsis

  • Pdx1 is crucial for pancreas development and beta cell function, and its mutations can lead to early-onset diabetes known as MODY.
  • In mice lacking Irs2, Pdx1 expression is decreased in pancreatic islets prior to diabetes onset, indicating a relationship between insulin signaling and Pdx1 expression.
  • Enhancing Pdx1 levels in Irs2(-/-) mice improved beta cell function and prevented diabetes, suggesting that Pdx1 dysregulation is linked to both type 2 diabetes and MODY.

Article Abstract

The homeodomain transcription factor Pdx1 is required for pancreas development, including the differentiation and function of beta cells. Mutations in Pdx1 or upstream hepatocyte nuclear factors cause autosomal forms of early-onset diabetes (maturity-onset diabetes of the young [MODY]). In mice, the Irs2 branch of the insulin/Igf signaling system mediates peripheral insulin action and pancreatic beta cell growth and function. To investigate whether beta cell failure in Irs2(-/-) mice might be related to dysfunction of MODY-related transcription factors, we measured the expression of Pdx1 in islets from young Irs2(-/-) mice. Before the onset of diabetes, Pdx1 was reduced in islets from Irs2(-/-) mice, whereas it was expressed normally in islets from wild-type or Irs1(-/-) mice, which do not develop diabetes. Whereas male Irs2(-/-)Pdx1(+/+) mice developed diabetes between 8 and 10 weeks of age, haploinsufficiency for Pdx1 caused diabetes in newborn Irs2(-/-) mice. By contrast, transgenic expression of Pdx1 restored beta cell mass and function in Irs2(-/-) mice and promoted glucose tolerance throughout life, as these mice survived for at least 20 months without diabetes. Our results suggest that dysregulation of Pdx1 might represent a common link between ordinary type 2 diabetes and MODY.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150960PMC
http://dx.doi.org/10.1172/JCI14439DOI Listing

Publication Analysis

Top Keywords

irs2-/- mice
20
beta cell
16
mice
10
pdx1
8
diabetes
8
expression pdx1
8
beta
5
irs2-/-
5
pdx1 restores
4
restores beta
4

Similar Publications

Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM.

View Article and Find Full Text PDF

Lipid rafts are subdomains of the cell membrane that are rich in cholesterol and glycolipids, and they are involved in various cellular processes and pathophysiological mechanisms. However, the specific role of lipid rafts in hepatocyte dysfunction during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is not fully understood. In this study, we investigated the impact of lipid rafts on insulin sensitivity and hepatocyte injury induced by saturated free fatty acids (sFFAs) using primary-cultured mouse hepatocytes.

View Article and Find Full Text PDF

Objective: Perilipin 5 (PLIN5) is a lipid droplet protein highly expressed in cells that actively oxidize fatty acids. Previous in vitro studies have revealed that PLIN5 phosphorylation (p-PLIN5) at serine 155 by PKA is critical for transcriptional regulation of PPARa target genes by which PLIN5 adapt cells for fatty acid oxidation. We aim to determine the extent of p-PLIN5 in vivo and the consequence of impaired PLIN5 phosphorylation in the liver by using a whole-body knock-in of phosphorylation resistant PLIN5 (SA/SA) in mice.

View Article and Find Full Text PDF

Background: Modified Si-Miao granule (mSMG), a traditional Chinese medicine, is beneficial for T2DM and insulin resistance (IR), but the underlying mechanism remains unknown.

Methods: Using network pharmacology, we screened the compounds of mSMG and identified its targets and pathway on hepatic IR in T2DM. Using molecular docking, we identified the affinity between the compounds and hub target TNF-α.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!