Recently we reported that osmotic shock increased the insulin-stimulated tyrosine phosphorylation of a 68-kDa RNA-binding protein in 3T3-L1 adipocytes (Hresko, R. C., and Mueckler, M. (2000) J. Biol. Chem. 275, 18114-18120). In this present study we have identified, by MALDI mass spectrometry, pp68 as the tyrosine-phosphorylated form of synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP)/NSAP1, a newly discovered cytoplasmic RNA-binding protein. Both SYNCRIP and pp68 were enriched in free polysomes found in low density microsomes isolated from 3T3-L1 adipocytes. In vitro phosphorylation studies revealed that SYNCRIP, once extracted from low density microsomes, can be tyrosine phosphorylated using purified insulin receptor. Binding of RNA to SYNCRIP specifically inhibited its in vitro phosphorylation but had no effect on receptor autophosphorylation or on the ability of the receptor to phosphorylate a model substrate, RCM-lysozyme. These results raise the possibility that regulation of mRNA translation or stability by insulin may involve the phosphorylation of SYNCRIP.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M202556200DOI Listing

Publication Analysis

Top Keywords

rna-binding protein
12
pp68 tyrosine-phosphorylated
8
tyrosine-phosphorylated form
8
cytoplasmic rna-binding
8
3t3-l1 adipocytes
8
low density
8
density microsomes
8
vitro phosphorylation
8
identification pp68
4
form syncrip/nsap1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!