In parallel with our work on solution-phase parallel synthesis of ligands for the rotamase enzyme FKBP12, we herein report a methodology for the solid-phase synthesis of two classes of inhibitor, N-sulfonyl and N-carbamoylprolyl and pipecolyl amides along with their in vitro/in vivo biological results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-894x(02)00146-4DOI Listing

Publication Analysis

Top Keywords

solid-phase synthesis
8
synthesis fkbp12
4
fkbp12 inhibitors
4
inhibitors n-sulfonyl
4
n-sulfonyl n-carbamoylprolyl/pipecolyl
4
n-carbamoylprolyl/pipecolyl amides
4
amides parallel
4
parallel work
4
work solution-phase
4
solution-phase parallel
4

Similar Publications

Novel core-shell flower-like polyamine/C dual-functional magnetic titanium dioxide-based oligopolymer (FeO@fTiO-PAPMA/C) microspheres were synthesized and used as a magnetic solid-phase extraction (MSPE) adsorbent to purify 52 pesticides in bayberry samples. The FeO@fTiO-PAPMA/C microspheres were fully characterized and it can obviously improve the purification ability of 52 pesticides in bayberry samples. Coupled to LC-MS/MS, the developed method indicated low limits of detection (LODs) and limits of quantification (LOQs) of 0.

View Article and Find Full Text PDF

In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) with high metal loadings are highly desirable but still challenging for large scale synthesis. Here we report a new technique named as dry-solid-electrochemical synthesis (DSES) for a general large-scale synthesis of SACs with high metal loadings in an energy-conservation and environment-friendly way. With it, a series of pure carbon-supported metal SACs (Platinum up to 35.

View Article and Find Full Text PDF

Tea saponin has garnered tremendous interest for its potential use in surfactant and drug synthesis. This research was designed to develop a technique based on pH-responsive switchable deep eutectic solvents (SDESs) for extracting tea saponins from Camellia oleifera seed meal. SDES synthesized from hexanoic acid and triethanolamine (1:1 molar ratio) offered the optimum extractive performance and the optimal conditions were obtained through single-factor experiments: 30 wt% water content in SDES, solid-liquid ratio of 1:30 g/mL, 60°C extraction temperature, 30 min extraction time, and acid volume of 1500 µL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!