TK is a pyrimidine metabolic pathway enzyme involved in salvage DNA synthesis. What roles TK may play in epithelial ovarian cancer and the relationships between TK and the other pyrimidine pathway enzymes remain unclear. We examined TK1 gene expression by RT-PCR and related it to gene expression of TS, TP and DPD in 69 samples from epithelial ovarian cancer, 8 low-malignant-potential tumors, 16 benign ovarian tumors and 34 normal ovaries. Additionally, cytosolic and serum TK activities were determined by radioenzymatic assay. TK1 gene expression, the ratio of TK1 to TS gene expression, that of TK1 to TP and that of TK1 to DPD were significantly higher in epithelial ovarian cancer than in normal ovaries. In epithelial ovarian cancer, TK1 gene expression correlated with cytosolic and serum TK activities, TS and TP gene expression and the ratio of TP to DPD gene expression. Patients with high-TK1 gene expression had a significantly poorer survival than those with low TK1 gene expression. Combined analysis demonstrated that the relative risk of cancer death for tumors with high TK1, high TS and high TP gene expression was greater than that for tumors with high TK1 gene expression alone. TK1 gene expression together with TS, TP and DPD gene expression may play important roles in influencing the malignant behavior of epithelial ovarian cancer. Combination therapy including TK inhibitor is a possible therapeutic intervention in patients with epithelial ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.10319 | DOI Listing |
J Clin Invest
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Ischemic stroke is a major cause of adult disability. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, the identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFGM Crops Food
December 2025
School of Life Science, Henan University, Kaifeng, Henan, People's Republic of China.
Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
University of Chicago, Chicago, IL, United States.
Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!