Inwardly rectifying K+ channels or Kirs are a large gene family and have been predicted to have two transmembrane segments, M1 and M2, intracellular N and C termini, and two extracellular loops, E1 and E2, separated by an intramembranous pore-forming segment, H5. H5 contains a stretch of eight residues that are similar in voltage-dependent K+ channels, Kvs, and this stretch is called the signature sequence of K+ channels. Because mutations in this sequence altered selectivity in Kvs, it has been designated as the selectivity filter. Previously, we used N-glycosylation substitution mutants to map the extracellular topology of a weak inwardly rectifying K+ channel, Kir1.1 or ROMK1, and found that the entire H5 segment was extracellular. We now report utilization of introduced N-glycosylation sites, NX(S/T), at positions Ser(128) in E1, and Gln(140), Ileu(143), and Phe(147) in the H5 sequence of a strong inwardly rectifying K+ channel, Kir2.1. Furthermore, we show that biotinylated channel proteins with N-linked oligosaccharides attached at positions 140 and 143 in the signature sequence are located at the cell surface. Mutant channels were functional as detected by whole-cell and single-channel recordings. Unlike Kir1.1, position Lys(117) was not occupied. We conclude that, for yet another K+ channel, the invariant G(Y/F)G sequence is extracellular rather than intramembranous.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M201668200 | DOI Listing |
Insects
January 2025
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
Inwardly rectifying potassium (Kir) channels regulate essential physiological processes in insects and have been identified as potential targets for developing new insecticides. Flonicamid has been reported to inhibit Kir channels, disrupting the functions of salivary glands and renal tubules. However, the precise molecular target of flonicamid remains debated.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
: Hypertension (HTN) constitutes a significant global health burden, yet the specific genetic variant responsible for blood pressure regulation remains elusive. This study investigates the genetic basis of hypertension in the Jordanian population, focusing on gene variants related to ion channels and transporters, including , , , , , , , , and . : This research involved 200 hypertensive patients and 224 healthy controls.
View Article and Find Full Text PDFFront Pharmacol
January 2025
IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain.
The Selectivity Filter (SF) in tetrameric K channels, has a highly conserved sequence, TVGYG, at the extracellular entry to the channel pore region. There, the backbone carbonyl oxygens from the SF residues, create a stack of K binding sites where dehydrated K binds to induce a conductive conformation of the SF. This increases intersubunit interactions and confers a higher stability to the channel against thermal denaturation.
View Article and Find Full Text PDFbioRxiv
January 2025
Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239.
Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
Institute for Nutritional Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Scope: Insulin responses to standardized meals differ between individuals. This variability may in part be explained by genotype. This systematic review evaluates associations between genotype and insulin response to an oral glucose tolerance test (OGTT) in terms of insulin area under the curve (AUC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!