Object: The purpose of this study was to determine the diagnostic accuracy of high-field (1.5-tesla) magnetic resonance (MR) imaging in the assessment of hyperacute (< 12 hours after onset of symptoms) subarachnoid hemorrhage (SAH).

Methods: This investigation included 13 patients who were examined 2 to 12 hours posthemorrhage by using an MR imaging protocol consisting of T2-weighted and proton-density (PD)-weighted images, T1-weighted images, fast echoplanar-diffusion-weighted (EP-DW) images, and fluid-attenuated inversion-recovery (FLAIR) images. Subarachnoid hemorrhage had been diagnosed using computerized tomography (CT) scanning in all cases. In all 13 cases, SAH was reliably detected on both PD-weighted and FLAIR images. In contrast with FLAIR studies, the PD-weighted images were free of cerebrospinal fluid flow artifacts. The SAH was detected on T1-weighted images in only two cases and could not be detected on any T2-weighted or EP-DW images.

Conclusions: Even hyperacute SAH can be diagnosed reliably from high-field MR images obtained using PD-weighted or FLAIR sequences. Use of these sequences in an emergency MR protocol may preclude the need for additional CT studies to rule out SAH.

Download full-text PDF

Source
http://dx.doi.org/10.3171/jns.2002.96.4.0684DOI Listing

Publication Analysis

Top Keywords

subarachnoid hemorrhage
12
magnetic resonance
8
resonance imaging
8
images
8
pd-weighted images
8
t1-weighted images
8
flair images
8
pd-weighted flair
8
detection hyperacute
4
hyperacute subarachnoid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!