Membrane fluidity and overall protein secondary structure of human erythrocytes were studied in situ using Fourier transform infrared spectroscopy (FTIR). Erythrocyte membranes were found to have weakly cooperative phase transitions at 14 degrees C and at 34 degrees C, which were tentatively assigned to the melting of the inner membrane leaflet and the sphingolipid rich outer leaflet, respectively. Cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) resulted in a large increase in the cooperativity of these transitions, and led to the appearance of another phospholipid transition at 25 degrees C. Multiple, sharp membrane phase transitions were observed after 5 days cold storage (4 degrees C ), which indicated phase separation of the membrane lipids. Using fluorescence microscopy, it was determined that the lipid probe 1,1'-dioctadecyl-3,3,3',3-tetramethyl-indocarbocyanine perchlorate (dil-C18) remained homogeneously distributed in the erythrocyte membrane during cold storage, suggesting that lipid domains were below the resolution limit of the microscope. Using thin layer chromatography, changes in the membrane lipid composition were detected during cold storage. By contrast, assessment of the amide-II band with FTIR showed that the overall protein secondary structure of haemoglobin was stable during cold storage.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09687680110103613DOI Listing

Publication Analysis

Top Keywords

cold storage
20
erythrocyte membrane
8
protein secondary
8
secondary structure
8
phase transitions
8
membrane
7
cold
5
storage
5
situ assessment
4
assessment erythrocyte
4

Similar Publications

Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.

Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.

View Article and Find Full Text PDF

Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

Challenges for complement functional assays in the clinical laboratory: From test validation to clinical interpretation.

J Immunol Methods

January 2025

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America. Electronic address:

Complement functional assays are essential first-tier tests for a gamut of disorders spanning from inborn errors of the immune system which lead to recurrent severe infections, to angioedema attacks, presentation of autoimmune disease, thrombotic microangiopathies and rare kidney disorders. These assays evaluate the activity of the three complement pathways and specific complement components, which helps in differential diagnosis and monitoring disease progression. The rising use of complement inhibitors for treating complement-mediated thrombotic microangiopathies has heightened the demand for personalized treatment plans and laboratory assessment of complement blockage.

View Article and Find Full Text PDF

The application of spermatogonial stem cells (SSC) will be more effective and feasible following the successful cryopreservation and transfer of SSCs in livestock. Like other cells, SSCs are also sensitive to cryoinjury; hence composition of the cryomedia and freezing protocols need to be optimized. The present study aims to optimising the best freezing rates by minimising the ice crystallization and dehydration effect in order to maximize the post-thaw SSCs survivability and stemness characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!