Activation of the insulin-like growth factor-1 receptor (IGF-1R) by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P450 1A1, cytochrome P450 1B1, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s) whereby some of these changes occur.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1531694 | PMC |
http://dx.doi.org/10.1038/sj.neo.7900229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!