Maintenance of replication forks and the S-phase checkpoint by Cdc18p and Orp1p.

Nat Cell Biol

Cell Cycle Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.

Published: May 2002

S-phase and DNA damage checkpoint controls block the onset of mitosis when DNA is damaged or DNA replication is incomplete. It has been proposed that damaged or incompletely replicated DNA generates structures that are sensed by the checkpoint control pathway, although little is known about the structures and mechanisms involved. Here, we show that the DNA replication initiation proteins Orp1p and Cdc18p are required to induce and maintain the S-phase checkpoint in Schizosaccharomyces pombe. The presence of DNA replication structures correlates with activation of the Cds1p checkpoint protein kinase and the S-phase checkpoint pathway. By contrast, induction of the DNA damage pathway is not dependent on Orp1p or Cdc18p. We propose that the presence of unresolved replication forks, together with Orp1p and Cdc18p, are necessary to activate the Cds1p-dependent S-phase checkpoint.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb789DOI Listing

Publication Analysis

Top Keywords

s-phase checkpoint
16
dna replication
12
orp1p cdc18p
12
replication forks
8
dna damage
8
checkpoint
7
dna
7
s-phase
5
maintenance replication
4
forks s-phase
4

Similar Publications

PrimPol-mediated repriming elicits gap-filling by template switching and promotes cellular tolerance to cidofovir.

DNA Repair (Amst)

November 2024

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan. Electronic address:

A nucleoside analog, Cidofovir (CDV), is used for the treatment of viral diseases such as cytomegalovirus retinitis and herpes virus infection. CDV converts to its active diphosphate metabolite (CDVpp) through cellular kinases and acts as a competitive inhibitor for viral polymerase thereby interfering with viral replication. However, the effect of this drug on the replication of healthy host cells and the mechanisms involved in the cellular tolerance to CDV are yet to be fully understood.

View Article and Find Full Text PDF

Dihydroorotate dehydrogenase (DHODH) inhibitors have recently gained increasing research interest owing to their potential for treating breast cancers. We explored their effects in different breast cancer subtypes, focusing on mitochondrial dysfunction. The sensitivity of different subtypes to the inhibitors was investigated with respect to DHODH expression, tumorigenic, and receptor status.

View Article and Find Full Text PDF

Extrachromosomal DNA (ecDNA) presents a major challenge for cancer patients. ecDNA renders tumours treatment resistant by facilitating massive oncogene transcription and rapid genome evolution, contributing to poor patient survival. At present, there are no ecDNA-specific treatments.

View Article and Find Full Text PDF

Replication stress describes endogenous and exogenous challenges to DNA replication in the S-phase. Stress during this critical process causes helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response in yeast is hydroxyurea (HU), a clinically used chemotherapeutic.

View Article and Find Full Text PDF

Formaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA-NH groups. Histone lysines are another source of aldehyde-reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!