Background: During the summer of 1999, Chicago's second deadliest heat wave of the decade resulted in at least 80 deaths. The high mortality, exceeded only by a 1995 heat wave, provided the opportunity to investigate the risks associated with heat-related deaths and to examine the effectiveness of targeted heat-relieving interventions.
Methods: We conducted a case-control study to determine risk factors for heat-related death. We collected demographic, health, and behavior information for 63 case patients and 77 neighborhood-and-age-matched control subjects and generated odds ratios (ORs) for each potential risk factor.
Results: Fifty-three percent of the case patients were aged <65 years, and psychiatric illness was almost twice as common in the younger than the older age group. In the multivariate analysis, the strongest risk factors for heat-related death were living alone (OR=8.1; 95% confidence interval [CI], 1.4-48.1) and not leaving home daily (OR=5.8; 95% CI, 1.5-22.0). The strongest protective factor was a working air conditioner (OR=0.2; 95% CI, 0.1-0.7). Over half (53%) of the 80 decedents were seen or spoken to on the day of or day before their deaths.
Conclusions: A working air conditioner is the strongest protective factor against heat-related death. The relatively younger age of case patients in 1999 may be due to post-1995 interventions that focused on the elderly of Chicago. However, social isolation and advanced age remain important risk factors. Individual social contacts and educational messages targeted toward at-risk populations during heat waves may decrease the number of deaths in these groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0749-3797(02)00421-x | DOI Listing |
Anal Chim Acta
January 2025
College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:
Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).
View Article and Find Full Text PDFInt J Implant Dent
January 2025
School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China. Electronic address:
In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!