We have used real-time quantitative reverse transcriptase PCR (TaqMan) to quantify the expression of the four tissue inhibitor of metalloproteinases (Timp) genes in mouse tissues during development and in the adult. Among the four Timp genes, Timp-4 shows the most restricted pattern of expression, with highest RNA levels in brain, heart and testes. These data indicate that in the brain, Timp-4 transcripts are temporally regulated during development, becoming more abundant than those of the other Timps after birth. Cloning of the Timp-4 gene confirmed a five-exon organization resembling that of Timp-2 and Timp-3, and like all Timps, Timp-4 is located within an intron of a synapsin gene. Ribonuclease protection analysis and 5'-rapid amplification of cDNA ends PCR identified multiple transcription starts for Timp-4 from brain and heart mRNA. The promoter region of Timp-4 was functional in transient transfection analysis in mouse C3H10T1/2 fibroblasts, where it directed basal expression that was non-inducible by serum. The TATA-less promoter contains consensus motifs for Sp1 and an inverted CCAAT box upstream of an initiator-like element that is in close proximity to a transcription start site. Mutation of the CCAAT box caused a 2-fold increase in reporter expression. More significantly, mutation of the Sp1 motif or initiator-like element almost completely abolished reporter expression. This first functional characterization of the Timp-4 promoter shows it to be distinct from other members of the Timp family and provides insights into potential mechanisms controlling the tight spatio-temporal expression pattern of the gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222549 | PMC |
http://dx.doi.org/10.1042/bj3640089 | DOI Listing |
BMC Pharmacol Toxicol
July 2013
Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy, Boston University School of Medicine, Boston, MA 02118, USA.
Background: The γ-aminobutyric acid (GABA) type A receptor (GABA(A)R) contains the recognition sites for a variety of agents used in the treatment of brain disorders, including anxiety and epilepsy. A better understanding of how receptor expression is regulated in individual neurons may provide novel opportunities for therapeutic intervention. Towards this goal we have studied transcription of a GABA(A)R subunit gene (GABRB1) whose activity is autologously regulated by GABA via a 10 base pair initiator-like element (β(1)-INR).
View Article and Find Full Text PDFBMC Genomics
February 2013
Department of Plant Pathology and Microbiology, University of California, 92521, Riverside, CA 92521, USA.
Background: The core promoter is the region flanking the transcription start site (TSS) that directs formation of the pre-initiation complex. Core promoters have been studied intensively in mammals and yeast, but not in more diverse eukaryotes. Here we investigate core promoters in oomycetes, a group within the Stramenopile kingdom that includes important plant and animal pathogens.
View Article and Find Full Text PDFObjectives : GTF2I and GTF2IRD1 genes located in Williams-Beuren syndrome (WBS) critical region encode TFII-I family transcription factors. The aim of this study was to map genomic sites bound by these proteins across promoter regions of developmental regulators associated with craniofacial development. Design : Chromatin was isolated from human neural crest progenitor cells and the DNA-binding profile was generated using the human RefSeq tiling promoter ChIP-chip arrays.
View Article and Find Full Text PDFDNA Res
August 2010
1National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.
For the last couple of years, a method that permits the collection of precise positional information of transcriptional start sites (TSSs) together with digital information of the gene-expression levels in a high-throughput manner was established. We applied this novel method, 'tss-seq', to elucidate the transcriptome of tachyzoites of the Toxoplasma gondii, which resulted in the identification of 124,000 TSSs, and they were clustered into 10,000 transcription regions (TRs) with a statistics-based analysis. The TRs and annotated ORFs were paired, resulting in the identification of 30% of the TRs and 40% of the ORFs without their counterparts, which predicted undiscovered genes and stage-specific transcriptions, respectively.
View Article and Find Full Text PDFPlant Mol Biol
March 2008
Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
Genes encoding plastid ribosomal proteins are distributed between the nuclear and plastid genomes in higher plants, and coordination of their expression is likely to be required for functional plastid protein synthesis. A custom microarray has been used to examine the patterns of accumulation of transcripts from plastid and nuclear genes encoding plastid ribosomal proteins during seedling development in tobacco and Arabidopsis. The transcripts accumulate coordinately during early seedling development and show similar responses to light and to inhibitors, such as norflurazon and lincomycin, affecting plastid signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!