Effects of adenosine on voltage-gated Ca(2+) channel currents and on arginine vasopressin (AVP) and oxytocin (OT) release from isolated neurohypophysial (NH) terminals of the rat were investigated using perforated-patch clamp recordings and hormone-specific radioimmunoassays. Adenosine, but not adenosine 5'-triphosphate (ATP), dose-dependently and reversibly inhibited the transient component of the whole-terminal Ba(2+) currents, with an IC(50) of 0.875 microM. Adenosine strongly inhibited, in a dose-dependent manner (IC(50) = 2.67 microM), depolarization-triggered AVP and OT release from isolated NH terminals. Adenosine and the N-type Ca(2+) channel blocker omega-conotoxin GVIA, but not other Ca(2+) channel-type antagonists, inhibited the same transient component of the Ba(2+) current. Other components such as the L-, Q- and R-type channels, however, were insensitive to adenosine. Similarly, only adenosine and omega-conotoxin GVIA were able to inhibit the same component of AVP release. A(1) receptor agonists, but not other purinoceptor-type agonists, inhibited the same transient component of the Ba(2+) current as adenosine. Furthermore, the A(1) receptor antagonist 8-cyclopentyltheophylline (CPT), but not the A(2) receptor antagonist 3, 7-dimethyl-1-propargylxanthine (DMPGX), reversed inhibition of this current component by adenosine. The inhibition of AVP and OT release also appeared to be via the A(1) receptor, since it was reversed by CPT. We therefore conclude that adenosine, acting via A(1) receptors, specifically blocks the terminal N-type Ca(2+) channel thus leading to inhibition of the release of both AVP and OT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290279 | PMC |
http://dx.doi.org/10.1113/jphysiol.2002.016394 | DOI Listing |
J Neurosci
January 2025
Department of Biology, University of Miami, Coral Gables, FL 33143 USA
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.
View Article and Find Full Text PDFNutrients
December 2024
Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.
View Article and Find Full Text PDFCell Commun Signal
November 2024
Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
Loss-of-function mutations in the human gene encoding the neuron-specific Ca channel Ca2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated Ca2.
View Article and Find Full Text PDFMol Brain
November 2024
Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
P/Q-type (Ca2.1) calcium channels mediate Ca influx essential for neuronal excitability and synaptic transmission. The CACNA1A gene, encoding the Ca2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!