The oncogenic protein beta-catenin is overexpressed in many cancers, frequently accumulating in nuclei where it forms active complexes with lymphoid enhancer factor-1 (LEF-1)/T-cell transcription factors, inducing genes such as c-myc and cyclin D1. In normal cells, nuclear beta-catenin levels are controlled by the adenomatous polyposis coli (APC) protein through nuclear export and cytoplasmic degradation. Transient expression of LEF-1 is known to increase nuclear beta-catenin levels by an unknown mechanism. Here, we show that APC and LEF-1 compete for nuclear beta-catenin with opposing consequences. APC can export nuclear beta-catenin to the cytoplasm for degradation. In contrast, LEF-1 anchors beta-catenin in the nucleus by blocking APC-mediated nuclear export. LEF-1 also prevented the APC/CRM1-independent nuclear export of beta-catenin as revealed by in vitro assays. Importantly, LEF-1-bound beta-catenin was protected from degradation by APC and axin in SW480 colon cancer cells. The ability of LEF-1 to trap beta-catenin in the nucleus was down-regulated by histone deacetylase 1, and this correlated with a decrease in LEF1 transcription activity. Our findings identify LEF-1 as key regulator of beta-catenin nuclear localization and stability and suggest that overexpression of LEF-1 in colon cancer and melanoma cells may contribute to the accumulation of oncogenic beta-catenin in the nucleus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M110602200 | DOI Listing |
Mol Biol (Mosk)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.
ENY2 is an evolutionarily conserved multifunctional protein and is a member of several complexes that regulate various stages of gene expression. ENY2 is a subunit of the TREX-2 complex, which is necessary for the export of bulk mRNA from the nucleus to the cytoplasm through the nuclear pores in many eukaryotes. The wide range of ENY2 functions suggests that it can also associate with other protein factors or complexes.
View Article and Find Full Text PDFVirology
December 2024
Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA. Electronic address:
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation.
View Article and Find Full Text PDFEMBO J
December 2024
CRBM, Univ. Montpellier, CNRS, Montpellier, France.
The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Department of Molecular Pharmacology and Therapeutics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
: Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with limited treatment options. The nuclear export protein XPO1 has emerged as a potential therapeutic target in cancer, but its role in TNBC has not been fully characterized. This study investigates the potential of repurposing selinexor, an FDA-approved XPO1 inhibitor, as a novel therapeutic options for TNBC.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany.
Inflammation-induced cholestasis is a common problem in septic patients and results from cytokine-mediated inhibition of bile acid export including impaired expression of the bile salt export pump (BSEP) with a consecutive increase in intracellular bile acids mediating cell damage. The present study focuses on the mechanisms by which interleukin 1 β (IL-1β), as a critical mediator of sepsis-induced cholestasis, controls the expression of BSEP in hepatocytes. Notably, the treatment of hepatocytes with IL-1β leads to the upregulation of a broad chemokine pattern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!