Objective: It has been suggested that the primary focus of the pathological process in schizophrenia is on the limbic system, and there have been several postmortem reports of changes in the histological structure or volume of the hippocampus, as well as a larger number of MRI reports of volume reductions. There are conflicting findings, however, with both techniques.

Method: The authors conducted a study of the gross and subfield structure and cellular composition of the hippocampus in postmortem brains from 30 patients with DSM-IV-diagnosed schizophrenia (13 women, 17 men) and 29 comparison subjects with no psychopathology (14 women, 15 men). Stereological sampling procedures were applied to 25-microm-thick coronal paraffin sections taken at 5-mm intervals throughout the formalin-fixed hippocampus. Subfields were defined as the dentate fascia, the hilus (CA4), an amalgamation of the CA2 and CA3 subfields, the CA1 subfield, and the subiculum. Volumes, cell densities, and cell numbers of the subfields were assessed microscopically, and the volume of the hippocampus was estimated from both photographs and histological slides of the coronal slices.

Results: As assessed from histologically stained slides, the volumes of the hippocampus and its subfields did not differ between patients and comparison subjects. Left-sided reduction in hippocampal volumes estimated from photographs, which may have included parahippocampal tissue, was not confirmed on histological examination. No significant differences were observed between patients and comparison subjects in the cellular composition of the hippocampus.

Conclusions: These findings do not support a primary alteration of the hippocampus in schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1176/appi.ajp.159.5.821DOI Listing

Publication Analysis

Top Keywords

hippocampus subfields
12
comparison subjects
12
volumes hippocampus
8
volume hippocampus
8
cellular composition
8
women men
8
estimated photographs
8
patients comparison
8
hippocampus
7
subfields
5

Similar Publications

Background: Systemic lupus erythematosus (SLE) often presents with neuropsychiatric (NP) involvement, including cognitive impairment and depression. Past magnetic resonance imaging (MRI) research in SLE patients showed smaller hippocampal volumes but did not investigate other medial temporal lobe (MTL) regions. Our study aims to compare MTL subregional volumes in SLE patients to healthy individuals (HI) and explore MTL subregional volumes in relation to neuropsychiatric SLE (NPSLE) manifestations.

View Article and Find Full Text PDF

Walking and Hippocampal Formation Volume Changes: A Systematic Review.

Brain Sci

January 2025

Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK.

Background/objectives: Sustaining the human brain's hippocampus from atrophy throughout ageing is critical. Exercise is proven to be effective in promoting adaptive hippocampal plasticity, and the hippocampus has a bidirectional relationship with the physical environment. Therefore, this systematic review explores the effects of walking, a simple physical activity in the environment, on hippocampal formation volume changes for lifelong brain and cognitive health.

View Article and Find Full Text PDF

Prenatal exposure to polycyclic aromatic hydrocarbons, reduced hippocampal subfield volumes, and word reading.

Dev Cogn Neurosci

January 2025

Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States; The Child Mind Institute, New York, NY, United States. Electronic address:

Reading difficulties and exposure to air pollution are both disproportionately high among youth living in economically disadvantaged contexts. Critically, variance in reading skills in youth living in higher socioeconomic status (SES) contexts largely derives from genetic factors, whereas environmental factors explain more of the variance in reading skills among youth living in lower SES contexts. Although reading research has focused closely on the psychosocial environment, little focus has been paid to the effects of the chemical environment.

View Article and Find Full Text PDF

Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients share similar symptoms including post-exertional malaise, neurocognitive impairment, and memory loss. The neurocognitive impairment in both conditions might be linked to alterations in the hippocampal subfields. Therefore, this study compared alterations in hippocampal subfields of 17 long COVID, 29 ME/CFS patients, and 15 healthy controls (HC).

View Article and Find Full Text PDF

Multi-scale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence from Cushing's Disease.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China. Electronic address:

Background: Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. This study explores structural and functional alterations of hippocampal subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!