PGE(2), PGF(2alpha) and the thromboxane agonist U-46619 bind to bovine aortic endothelial cells and compete on the same binding site with similar affinity. In addition, binding remains unaffected by prolonged exposure to the ligand. These characteristics differ significantly from those of any known G-coupled prostaglandin receptor. Binding of PGE(2) to the cells is reduced in the presence of the cyclic nucleotides cGMP and cAMP, and is unaffected by protein kinase inhibitors. Removal of permeable cyclic nucleotides from the cell medium results in a fast and complete restoration of PGE(2) binding to the cells, suggesting that both cyclic nucleotides reduce PGE(2) binding by a reversible interaction with the prostaglandin-binding site, without the involvement of second messenger-activated protein kinases. Our data further show that binding of prostaglandins to bovine aortic endothelial cells is sensitive to heavy metals and to activators and blockers of calcium, ATP-sensitive K(+) and chloride channels. Nickel, a specific cyclic nucleotide-gated (CNG) channel activator, decreases PGE(2) binding and so do the CNG channel activators Rp-8-Br-PET-cGMPS and Sp-8-Br-PET-cGMPS. On the other hand, the calcium channel blockers pimozide, diltiazem as well as LY-83,583, a guanylate cyclase inhibitor, which were reported to block CNG channels, enhance PGE(2) binding. The sensitivity of PGE(2) binding to selective CNG channel modifying agents, as well as the rapid and reversible interaction with cyclic nucleotides, may suggest that the common low-affinity prostanoid-binding site on bovine aortic endothelial cells is associated with a molecular entity, which possess several properties of a CNG channel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-4165(02)00160-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!