The peroxisome proliferator-activated receptor alpha-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain.

Neuropharmacology

Department of Clinical and Molecular Pharmacokinetics/Pharmacodynamics, Faculty of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.

Published: April 2002

Activated peroxisome proliferator activated receptor alpha (PPAR alpha) protects against the cellular inflammatory response, and is central to fatty acid-mediated upregulation of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS). We have previously demonstrated both PPAR alpha and mHS expression in brain, implying that brain-targeted PPAR alpha activators may likewise up-regulate mHS expression in brain. Thus, to attempt pharmacological activation of brain PPAR alpha in vivo, we have administered to rats two drugs with previously defined actions in rat brain, namely the PPAR alpha-selective activator ciprofibrate and the pan-PPAR activator valproate. Using the sensitive and discriminatory RNase protection co-assay, we demonstrate that both ciprofibrate and valproate induce mHS expression in liver, the archetypal PPAR alpha-expressing organ. Furthermore, ciprofibrate potently increases mHS mRNA abundance in rat brain, together with lesser increases in two other PPAR alpha-regulated mRNAs. Thus we demonstrate, for the first time, up-regulation of expression of PPAR alpha-dependent genes including mHS in brain, with implications in the increased elimination of neuro-inflammatory lipids and concomitant increased production of neuro-protective ketone bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0028-3908(02)00014-xDOI Listing

Publication Analysis

Top Keywords

ppar alpha
16
rat brain
12
mhs expression
12
alpha-selective activator
8
activator ciprofibrate
8
ppar
8
expression brain
8
brain ppar
8
brain
7
mhs
6

Similar Publications

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

α-amanitin induces hepatotoxicity via PPAR-γ inhibition and NLRP3 inflammasome activation.

Ecotoxicol Environ Saf

January 2025

Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China. Electronic address:

Mushroom poisoning, predominantly caused by α-amanitin, is a critical food safety concern in worldwide, with severe cases leading to hepatotoxicity and fatalities. This study delves into the hepatotoxic effects of α-amanitin, focusing on the NLRP3 inflammasome and PPAR-γ's regulatory role in inflammation. In vitro studies with L-02 cells showed that α-amanitin reduces cell viability and triggers NLRP3 inflammasome activation, increasing NF-κB phosphorylation and pro-inflammatory cytokines IL-18 and IL-1β.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

L. is known in Europe for its cardioactivity-also in interrelation with known risk factors of the metabolic syndrome-just as Houtt. in East Asia; however, up to now, no active constituents could be identified.

View Article and Find Full Text PDF

Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds.

Int J Mol Sci

January 2025

Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia.

Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!