2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) potentiators are ligands that act as positive allosteric modulators at the AMPA receptors. We recently disclosed a novel series of 2-arylpropylsulfonamides that were potent potentiators of responses mediated through AMPA receptors. To further define the structural requirements for activity in this series, new ring-constrained analogues were prepared and a new stereocenter was introduced. The potentiating activity was highly dependent on the stereochemistry at the 2-position of the disubstituted cyclopentane and was independent of the relative stereochemistry at the 1-position. Compound (R,R)-10 represents a potent, novel potentiator of iGluR4 flip receptors (EC(50) = 22.6 nM).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0105474DOI Listing

Publication Analysis

Top Keywords

ampa receptors
12
novel series
8
potent potentiators
8
2-amino-3-3-hydroxy-5-methyl-isoxazol-4-ylpropanoic acid
8
acid ampa
8
design synthesis
4
synthesis novel
4
series 12-disubstituted
4
12-disubstituted cyclopentanes
4
cyclopentanes small
4

Similar Publications

Background: Synapses can modify their strength in response to activity, and the unique properties of synapses that regulate their plasticity are essential for memory. Long-term potentiation (LTP) is considered the physiological basis for how neurons encode new memories. A complex series of postsynaptic signaling events in LTP is associated with memory deficits in tauopathy models, but the mechanism by which pathogenic tau inhibits plasticity at synapses is unknown.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a common form of dementia characterized by the accumulation of amyloid beta (Aβ) and phosphorylated tau proteins in the brain. While clinical observations are typically used for AD diagnosis, postmortem studies have revealed individuals without dementia symptoms but with high AD pathology, known as resilient individuals. Calcium permeable AMPA receptors (CP-AMPARs) have been implicated in the calcium dyshomeostasis of AD, but it is unclear whether they are found or behave differently at the electrophysiological level in resilient and control individuals compared to AD patients.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India.

Background: F-actin plays crucial roles in establishment and maintenance of synapses including post synaptic density organization, facilitation of vesicle trafficking, anchoring of postsynaptic receptors, and involvement in translational machinery. Proteomic analysis of actin-interacting proteins revealed the interaction of PSD-95 with actin in synaptosomes from brain cortex of APP/PS1 mice. PSD-95 functions as a critical scaffold for the assembly of neurotransmitter receptors at the synapse, playing a pivotal role in regulating synaptic strength and plasticity.

View Article and Find Full Text PDF

A decline in hippocampal function has long been associated with the progression of cognitive impairments in patients with Alzheimer's disease (AD). The disruption of hippocampal synaptic plasticity [primarily the reduction of long-term potentiation LTP] by excess production of soluble beta-amyloid (Aβ) has long been accepted as the mechanism by which AD pathology impairs memory, at least during the early stages of AD pathogenesis. However, the premise that hippocampal LTP underpins the formation of associative, long-term memories has been challenged.

View Article and Find Full Text PDF

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!