We examined the capacity of mouse glomerular mesangial cells (MC) to express and function through two different low affinity FcgammaRs, the activating FcgammaRIII and the inhibitory FcgammaRII. Immunohistochemistry identified FcgammaRII as the prominent FcgammaR in the kidney, and low levels of FcgammaRIIb2-specific mRNA were also detected in primary cultures of growth-arrested MC. Activation by tumor necrosis factor-alpha/interleukin-1beta induced substantial FcgammaRII expression in proliferating MC. Importantly, however, stimulation with interferon-gamma (IFN-gamma)/lipopolysaccharide or IFN-gamma alone resulted in a complete down-regulation of FcgammaRII, which was accompanied by a strong increase in FcRgamma chain mRNA and a surface appearance of FcgammaRIII. Activating FcgammaRIII triggered mRNA synthesis for monocyte chemoattractant protein-1 (MCP-1), MCP-5, cytokine-induced neutrophil chemoattractant, and RANTES, whereas FcgammaRIII-deficient MC failed to respond to immune complex (IC) activation as shown by impaired production of MCP-1 mRNA/protein. In a passive model of acute anti-glomerular basement membrane (GBM) nephritis, induction of FcgammaRIII and suppression of FcgammaRII occurred in kidney tissues. Blockade of FcgammaRII, when induced selectively in the kidney, resulted in enhanced inflammation. Taken together, our results define a novel regulatory pathway with opposite regulation of FcgammaRII (suppressed) and FcgammaRIII (induced) by IFN-gamma on MCs in vitro and anti-GBM IgG in vivo. Herein is provided the first evidence that glomerular FcgammaRII plays an important immunoregulatory role in the initiation of IC glomerulonephritis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M200419200DOI Listing

Publication Analysis

Top Keywords

opposite regulation
8
mouse glomerular
8
glomerular mesangial
8
mesangial cells
8
anti-glomerular basement
8
basement membrane
8
membrane gbm
8
gbm nephritis
8
activating fcgammariii
8
fcgammarii
8

Similar Publications

FOXG1 promotes osteogenesis of bone marrow-derived mesenchymal stem cells by activating autophagy through regulating USP14.

Commun Biol

January 2025

Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.

View Article and Find Full Text PDF

Genome-wide identification of WRKY transcription factor genes in Euphorbia lathyris reveals ElWRKY48 as a negative regulator of phosphate uptake and ingenol biosynthesis.

Int J Biol Macromol

January 2025

Institute of Botany, Jiangsu Province, Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Nanjing 210014, China. Electronic address:

WRKY transcription factors (TFs) play pivotal roles in regulating plant nutrient uptake, particularly phosphate (Pi) acquisition, and biosynthesis of secondary metabolites. Euphorbia lathyris, a significant medicinal plant with diverse pharmacological activities, lacks a systematic analysis of WRKY members and their functional roles. In this study, 58 ElWRKY genes were identified in the E.

View Article and Find Full Text PDF

Chitinase-3-like Protein 1 Reduces the Stability of Atherosclerotic Plaque via Impairing Macrophagic Efferocytosis.

J Cardiovasc Transl Res

January 2025

Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China.

CHI3L1 is strongly associated with atherosclerosis, but its role in macrophages remains unknown. In this study, we observed a significant up-regulation of CHI3L1 in both carotid plaques and serum of symptomatic patients, and demonstrated that CHI3L1 impairs the efferocytosis of macrophages by down-regulating crucial efferocytic mediator MFGE8 through inhibiting ATF2, which binds directly to the enhancer of MFGE8. In human plaques, we observed a negative correlation between CHI3L1 expression and both ATF2 and MFGE8 levels, further proved their involvement in plaque destabilization.

View Article and Find Full Text PDF

Roles for the long non-coding RNA / in pancreatic beta cell function.

iScience

January 2025

Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK.

Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the role of miR-361-5p (a tumor suppressor) in regulating granulosa cell function by targeting SLC25A24, a key mitochondrial protein, to uncover potential therapeutic targets for diminished ovarian reserve (DOR).

Methods: This study included patients undergoing assisted reproductive technology treatment at our hospital. Granulosa cells were isolated from follicular fluid, and KGN cells were used for in vitro experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!