GABA(B) receptor-mediated inhibition of mitral/tufted cell activity in the rat olfactory bulb: a whole-cell patch-clamp study in vitro.

Neuroscience

Laboratoire de Neurosciences et Systèmes Sensoriels, CNRS, UMR 5020, Université Claude Bernard, 50 avenue Tony Garnier, 69366 Lyon Cedex 07, France.

Published: August 2002

GABA, the major inhibitory neurotransmitter involved in information processing in the olfactory bulb, is hypothesized to act through GABA(B) receptors by depressing primary neurotransmitter release at the level of olfactory nerve axon endings. The present study was designed to analyze GABA(B) receptor-mediated inhibition mechanisms by performing whole-cell patch-clamp recordings of mitral/tufted cell activity in the rat in vitro. To do so, GABA(B) receptor-mediated action was mimicked by baclofen and antagonized by saclofen. Our protocol led us to provide an original description of GABA(B) receptor-mediated inhibition exerted on mitral/tufted cells. First, their spontaneous activity was shown to be drastically abolished by baclofen. Second, their responses to olfactory nerve electrical stimulation were graded by GABA(B) receptor-mediated inhibition. Indeed, this inhibition may be described as inducing effects ranked from a slight increase in response latency to a complete response suppression.Altogether, our results corroborate the hypothesis of a presynaptic extrasynaptic GABA(B) receptor-mediated inhibition influencing mitral/tufted cell olfactory nerve responsivity. However, the involvement of postsynaptic receptors, with different properties or with different anatomical locations, cannot be ruled out, particularly in the control of spontaneous activity. In conclusion, we underline that, in the vertebrate olfactory bulb, GABA(B) receptor-mediated action appears to contribute to make mitral/tufted cell responses more salient by reducing their resting activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(02)00003-9DOI Listing

Publication Analysis

Top Keywords

gabab receptor-mediated
28
receptor-mediated inhibition
20
mitral/tufted cell
16
olfactory bulb
12
olfactory nerve
12
gabab
8
cell activity
8
activity rat
8
whole-cell patch-clamp
8
receptor-mediated action
8

Similar Publications

The medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.

View Article and Find Full Text PDF

Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.

View Article and Find Full Text PDF

Modelling the effect of allopregnanolone on the resolution of spike-wave discharges.

J Comput Neurosci

December 2024

Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.

Article Synopsis
  • Childhood absence epilepsy (CAE) is a children's epilepsy that often resolves during adolescence, and this study investigates how the hormone allopregnanolone affects brain circuits involved in this disorder.
  • The research used a computational model of various brain neurons and found that allopregnanolone can help reduce spike-wave discharges linked to absence seizures, particularly in the thalamus.
  • The study suggests that the beneficial effects of allopregnanolone may vary among individuals based on their brain's connectivity and inhibition levels, paving the way for future research on remission in CAE patients.
View Article and Find Full Text PDF

In vivo dynamic tracking of cerebral chloride regulation using molecularly tailored liquid/liquid interfacial ultramicro iontronics.

Sci Adv

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Article Synopsis
  • Chloride ions play a crucial role in brain function and are linked to neurodegenerative diseases, but traditional methods for detecting them are ineffective due to their inactivity in electrochemical reactions.
  • A new technique using specially designed liquid/liquid interfacial ultramicro iontronics (L/L-UIs) allows for the real-time sensing of these chloride ions in living organisms by utilizing unique ionophores in a gel.
  • This method not only demonstrates the dynamic regulation of chloride ions in neurons influenced by GABA receptors but also opens up possibilities for tracking other important ions and molecules in the brain, aiding in research and treatment of various brain disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!