GABA, the major inhibitory neurotransmitter involved in information processing in the olfactory bulb, is hypothesized to act through GABA(B) receptors by depressing primary neurotransmitter release at the level of olfactory nerve axon endings. The present study was designed to analyze GABA(B) receptor-mediated inhibition mechanisms by performing whole-cell patch-clamp recordings of mitral/tufted cell activity in the rat in vitro. To do so, GABA(B) receptor-mediated action was mimicked by baclofen and antagonized by saclofen. Our protocol led us to provide an original description of GABA(B) receptor-mediated inhibition exerted on mitral/tufted cells. First, their spontaneous activity was shown to be drastically abolished by baclofen. Second, their responses to olfactory nerve electrical stimulation were graded by GABA(B) receptor-mediated inhibition. Indeed, this inhibition may be described as inducing effects ranked from a slight increase in response latency to a complete response suppression.Altogether, our results corroborate the hypothesis of a presynaptic extrasynaptic GABA(B) receptor-mediated inhibition influencing mitral/tufted cell olfactory nerve responsivity. However, the involvement of postsynaptic receptors, with different properties or with different anatomical locations, cannot be ruled out, particularly in the control of spontaneous activity. In conclusion, we underline that, in the vertebrate olfactory bulb, GABA(B) receptor-mediated action appears to contribute to make mitral/tufted cell responses more salient by reducing their resting activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(02)00003-9 | DOI Listing |
bioRxiv
January 2025
Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.
The medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.
View Article and Find Full Text PDFJ Physiol
January 2025
Université Paris Cité, CNRS, ENS Paris Saclay, Centre Borelli UMR 9010, Paris, France.
Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.
View Article and Find Full Text PDFJ Comput Neurosci
December 2024
Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.
Sci Adv
December 2024
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!