During wound healing, dermal fibroblasts switch from a migratory, repopulating phenotype to a contractile, matrix-reassembling phenotype. The mechanisms controlling this switch are unknown. A possible explanation is suggested by the finding that chemokines that appear late in wound repair prevent growth factor-induced cell-substratum de-adhesion by blocking calpain activation. In this study, we tested the specific hypothesis that fibroblast contraction of the matrix is promoted by a pro-repair growth factor, epidermal growth factor, and is modulated by calpain-mediated release of adhesions. We employed an isometric force transduction system designed to measure the contraction of a collagen matrix under tension by a population of NR6 fibroblasts transfected with the human epidermal growth factor receptor. By maintaining a fixed level of strain, we could monitor both the initial contraction and subsequent relaxation of the matrix. Epidermal growth factor stimulated a transient, dose-dependent increase in matrix contraction that peaked within 60 minutes and then decayed over the ensuing 3 to 6 hours. Calpain inhibitor I (ALLN) prevented epidermal growth factor-stimulated cell de-adhesion and resulted in a significantly slower decay of matrix contraction, with only a slight decrease of the peak magnitude of contraction. The mitogen-activated protein kinase kinase-1-selective inhibitor PD 98059 that blocks signaling through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway, required for epidermal growth factor receptor-mediated activation of calpain and de-adhesion, does not significantly affect the magnitude of matrix contraction within minutes of epidermal growth factor addition, but slows the decay similarly to calpain inhibition. Epidermal growth factor receptor signaling thus stimulates the complementary mechanisms of intracellular contractile force generation and calpain-mediated de-adhesion, which are known to coordinately facilitate cell migration. These findings suggest that calpain can act as a functional switch for transmission of intracellular contractile force to the surrounding matrix, with calpain-mediated de-adhesion reducing this transmission and corresponding matrix contraction. Countervailing processes that down-regulate calpain activation can, accordingly, direct the transition of cell function from locomotion to matrix contraction.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1524-475x.2002.10701.xDOI Listing

Publication Analysis

Top Keywords

epidermal growth
32
growth factor
32
matrix contraction
24
matrix
10
contraction
10
growth
9
epidermal
8
factor
8
contraction subsequent
8
calpain activation
8

Similar Publications

Breast cancer is a highly heterogeneous disease whose prognosis and treatment as defined by the expression of three receptors-oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2; encoded by ERBB2)-is insufficient to capture the full spectrum of clinical outcomes and therapeutic vulnerabilities. Previously, we demonstrated that transcriptional and genomic profiles define eleven integrative subtypes with distinct clinical outcomes, including four ER subtypes with increased risk of relapse decades after diagnosis. Here, to determine whether these subtypes reflect distinct evolutionary histories, interactions with the immune system and pathway dependencies, we established a meta-cohort of 1,828 breast tumours spanning pre-invasive, primary invasive and metastatic disease with whole-genome and transcriptome sequencing.

View Article and Find Full Text PDF

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure.

View Article and Find Full Text PDF

Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers.

J Chem Inf Model

January 2025

CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.

All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer. For locally advanced and advanced NSCLC, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-targeted therapy has been the first choice for NSCLC patients with EGFR mutations. TKIs, as targeted drugs, inhibit kinase activity and autophosphorylation by competitively binding to the ATP binding site of the EGFR tyrosine kinase domain, which blocks the signal transduction mediated by EGFR and thus inhibits the proliferation of tumor cells.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths. Curcumin has been reported to have suppressive effects in CRC and to address the physiological limitations of curcumin, a chemically synthesized curcuminoid analog, known as (2E,6E)-2,6-Bis (2,3-Dimethoxy benzylidine) cyclohexanone (DMCH), was developed and the anti-metastatic and anti-angiogenic properties of DMCH in colorectal cell line, SW620 were examined.

Methods: The anti-metastatic effects of DMCH were examined in the SW620 cell line by scratch assay, migration, and invasion assay, while for anti-angiogenesis properties of the cells, the mouse aortic ring assay and Human Umbilical Vein Endothelial Cells (HUVEC) assay were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!