A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The calcimimetic agents: perspectives for treatment. | LitMetric

The calcimimetic agents: perspectives for treatment.

Kidney Int Suppl

Department of Nephrology, Hospital São João, Porto, Portugal.

Published: May 2002

Recognition of the role of the extracellular calcium sensing receptor (CaR) in mineral metabolism has greatly improved our understanding of calcium homeostasis. The biology of the low affinity, G-protein-coupled CaR and the effects of its activation in various tissues are reviewed. Physiological roles include regulation of parathyroid hormone (PTH) secretion by small changes in ionized calcium (Ca++), and control of urinary calcium excretion with small changes in blood Ca++. The CaR also affects the renal handling of sodium, magnesium, and water. Mutations affecting the CaR that make it either less or more sensitive to Ca++ cause various clinical disorders. Disorders, such as primary and secondary hyperparathyroidism, may exhibit acquired abnormalities of the CaR. Calcimimetic drugs, which amplify the sensitivity of the CaR to Ca++, can suppress PTH levels with a resultant fall in blood Ca++. Experiences with R-568 in patients with secondary and primary hyperparathyroidism and parathyroid carcinoma are summarized. In humans with hyperparathyroidism, these agents produce a dose-dependent fall in PTH and blood Ca++, with larger doses causing more sustained effects. The second generation calcimimetic, AMG 073, with a better pharmacokinetic profile appears to be an effective and safe treatment for secondary hyperparathyroidism, producing suppression of PTH levels with a simultaneous reduction in serum phosphorus levels and the calcium X phosphorus product. The advantage of controlling PTH secretion without the complications related to hypercalcemia, hyperphosphatemia, and increased calcium X phosphorus product is very promising. Treatment trials have been relatively short-term except for one patient treated with R-568 for more than 600 days for parathyroid carcinoma; nonetheless the drug had no major side effects and appeared to be safe. Further long-term controlled studies are underway to further confirm the effectiveness and safety of these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1523-1755.61.s80.25.xDOI Listing

Publication Analysis

Top Keywords

blood ca++
12
pth secretion
8
small changes
8
secondary hyperparathyroidism
8
pth levels
8
parathyroid carcinoma
8
calcium phosphorus
8
phosphorus product
8
calcium
6
car
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!