The colorimetric properties of resorcinarene solutions had not been investigated since Baeyer's initial synthesis. We recently reported that solutions containing resorcinarene macrocycles develop color upon heating or standing. In the presence of saccharides, these solutions exhibit significant color changes which are easily seen. We herein present strong evidence that the solution color is due to macrocycle ring opening and oxidation. The optical responses to saccharides are due to complexation of the sugar with the acyclic chromophores. We apply these mechanistic insights toward the challenging problem of the visual detection of neutral oligosaccharides by simple chromogens. In addition, we also report the first single-crystal X-ray crystal structure determination of a rarely observed "diamond" resorcinarene stereoisomer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386614 | PMC |
http://dx.doi.org/10.1021/ja017713h | DOI Listing |
Beilstein J Nanotechnol
January 2025
Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky str. 1/29, Kazan 420008, Russia.
Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated.
View Article and Find Full Text PDFRSC Adv
October 2024
Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
Triptycene derivatives are used extensively in supramolecular and materials chemistry, however, most are prepared using a multi-step synthesis involving the generation of a benzyne intermediate, which hinders production on a large scale. Inspired by the ease of the synthesis of resorcinarenes, we report the rapid and efficient preparation of triptycene-like 1,6,2',7'-tetrahydroxynaphthopleiadene directly from 2,7-dihydroxynaphthalene and phthalaldehyde. Structural characterisation confirms the novel bridged bicyclic framework, within which the planes of the single benzene ring and two naphthalene units are fixed at an angle of ∼120° relative to each other.
View Article and Find Full Text PDFRSC Adv
August 2024
Insitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology 59 Hudong Road Ma'anshan Anhui 243002 P. R. China
Functionalization of -propyl-resorcinolcalix[4]arene (1a) and -iso-butyl-resorcinolcalix[4]arene (1b) with sodium sulfite and formaldehyde solution gave two corresponding sulfonatomethylated calix[4]resorcinarenes 2a/b. Further modification of 2a/b with different primary amines afforded three calix[4]resorcinarene sulfonamides 3a/b and 4c. Antibacterial and antitumor tests were performed on the starting calix[4]resorcinarenes and their sulfonic acid and sulfonamide derivatives.
View Article and Find Full Text PDFJ Hazard Mater
August 2024
Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, PR China. Electronic address:
The release of carbon disulfide can have adverse effects on our environment and human health. The stability of carbon disulfide and the slow kinetics of hydrolysis can make it challenging to achieve efficient and practical cleavage of the CS bonds. Herein, a calix[4]arene-based porous organic polymer (CPOP-1) is innovatively synthesized through an optimized polycondensation reaction using C-Methylcalix[4]resorcinarene and hexafluoro-hexaazatriphenylene as monomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!