The inhibition of marine nitrification by ocean disposal of carbon dioxide.

Mar Pollut Bull

Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, WA 98382, USA.

Published: February 2002

In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO2-induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the environmental effects of ocean disposal of CO2 is needed to determine whether the potential costs related to marine ecosystem disturbance and disruption can be justified in terms of the perceived benefits that may be achieved by temporarily delaying global warming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0025-326x(01)00194-1DOI Listing

Publication Analysis

Top Keywords

ocean disposal
12
disposal co2
12
nitrification rates
12
marine nitrification
8
carbon dioxide
8
global warming
8
co2 mid
8
mid deep
8
will result
8
euphotic zone
8

Similar Publications

How biofilm and granular sludge cope with dissolved oxygen exposure in anammox process: Performance, bioaccumulation characteristics and bacterial evolution.

J Environ Manage

January 2025

Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China. Electronic address:

In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L hardly affected the total nitrogen removal efficiency (TNRE).

View Article and Find Full Text PDF

Tire and road wear particles (TRWPs) are an appreciable source of microplastics (MPs); however, knowledge of their large-scale occurrence and mass flux based on robust sampling and quantification is limited. Herein, the first city-wide survey of TRWPs across environmental compartments (road dust, snowbank, water, and sediment from rivers and lakes) along four ring roads (beltways) in Beijing was performed. TRWP concentrations ( = 74) were quantified using bonded-sulfur as a marker to reveal the city-wide spatial distributions and adopted to establish a framework estimating TRWP emission factors (EFs) and mass flux from generation to remote atmospheric, terrestrial, and aquatic transport.

View Article and Find Full Text PDF

Climate change has become a major source of concern to the global community. The steady pollution of the environment including our waters is gradually increasing the effects of climate change. The disposal of plastics in the seas alters aquatic life.

View Article and Find Full Text PDF

Enset starch-based biocomposite film reinforced with Ethiopian bentonite clay: Improved mechanical and barrier properties.

Int J Biol Macromol

December 2024

Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea. Electronic address:

Improper disposal of traditional plastics leads to the generation of microplastics, resulting in severe pollution of land and oceans and posing a threat to human health and marine ecosystems. Hence, adopting eco-friendly bioplastics, particularly in food packaging, is essential. In this study, Enset starch-based biocomposite films, reinforced with Ethiopian bentonite clay at various ratios (0, 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!