Electron microscopic and immunohistochemical examination of scarred human cornea re-treated by excimer laser.

Graefes Arch Clin Exp Ophthalmol

Augenabteilung der Schlosspark-Klinik Berlin, Heubnerweg 2, 14059 Berlin, Germany.

Published: April 2002

Purpose: To elucidate differences, at the macromolecular level, in corneal tissue subjected to repeated argon fluoride excimer treatment.

Methods: A light microscopic, electron microscopic, and immunohistochemical study was performed on a scarred human cornea.

Results: Keratocytes were enlarged with an expanded endoplasmic reticulum and exhibited a fibroblastic appearance. Amorphous material was observed extracellularly. Collagen fibrils exhibited a disordered arrangement while banding patterns and diameter were normal. Immunohistochemical investigation of several collagen types, of collagen-associated proteoglycans, and of basement membrane components demonstrated an enhanced immunoreactivity of all of them in the scarred area. Type V collagen was found as a normal component of the epithelial basement membrane whereas types I and III collagen were present beneath Bowman's layer. Excimer-laser-treated sections revealed considerably stronger subepithelial staining for collagen types I, III, IV, and V. Laminin-1, a typical component of basement membranes, was detectable throughout the scarred tissue. The small proteoglycans decorin and fibromodulin accumulated in a patch-like manner in the scarred tissue below the epithelium, whereas biglycan was expressed by the epithelium and throughout the stroma. Lumican was expressed most strongly by the epithelium and rather equally distributed in the excimer-laser-treated and in the normal stroma.

Conclusion: Effects of argon laser treatment of the cornea must be regarded as a process acting over many months. Intra- and extracellular structures and components are involved and influence the unpredictable shape of the corneal architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00417-002-0430-xDOI Listing

Publication Analysis

Top Keywords

electron microscopic
8
microscopic immunohistochemical
8
scarred human
8
collagen types
8
basement membrane
8
types iii
8
scarred tissue
8
expressed epithelium
8
scarred
5
collagen
5

Similar Publications

Statement Of Problem: Comprehensive data are needed on the performance of chemically activated, chairside hard reline materials when used with computer-aided design and computer-aided manufacturing (CAD-CAM) milled polymethyl methacrylate (PMMA) denture bases and conventionally processed bases. This lack of data affects decisions regarding the chairside reline material to be used for improving the fit and retention of relined complete dentures.

Purpose: The purpose of this in vitro study was to evaluate and compare the shear bond strength (SBS) of 3 chemically activated, chairside hard reline materials on CAD-CAM milled and conventional heat-polymerized PMMA denture bases.

View Article and Find Full Text PDF

The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Newly synthesized 1-bromo-2-(4-bromophenylsulfonate)-4,4-dimethyl-1-cyclohexenyl-6-one (CHD) as a potential anticorrosive agent in an acidic medium at an elevated temperature range of 305-335 K. This synthesized compound confirmed by spectral characterizations and it acts as a coating on mild steel surfaces in 1 M Hydrochloric acid (HCl) solution through electrochemical reactions. The synthesis of the compound has been discussed, and the Infrared (IR) and Nucleic Magnetic Resonance (NMR) spectral analysis confirmed the derivative.

View Article and Find Full Text PDF

An active protein from Dendrobium officinale residue: Protects the gastric mucosa and stabilized in the gastrointestinal tract.

Int J Biol Macromol

January 2025

Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China. Electronic address:

A large number of by-products generated in the food industry is discarded as waste, especially the residue left after extracting plant resources, which is typically repurposed as fertilizer. In this study, we extracted and purified a new protein, DOP1, from the residue of Dendrobium officinale Kimura & Migo (D. officinale), and explored the protective effect of DOP1 on alcohol-induced gastric mucosal injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!