Loss of neurons in neurodegenerative diseases is usually preceded by the accumulation of protein deposits that contain components of the ubiquitin/proteasome system. Affected neurons in Alzheimer's disease often accumulate UBB(+1), a mutant ubiquitin carrying a 19-amino acid C-terminal extension generated by a transcriptional dinucleotide deletion. Here we show that UBB(+1) is a potent inhibitor of ubiquitin-dependent proteolysis in neuronal cells, and that this inhibitory activity correlates with induction of cell cycle arrest. Surprisingly, UBB(+1) is recognized as a ubiquitin fusion degradation (UFD) proteasome substrate and ubiquitinated at Lys29 and Lys48. Full blockade of proteolysis requires both ubiquitination sites. Moreover, the inhibitory effect was enhanced by the introduction of multiple UFD signals. Our findings suggest that the inhibitory activity of UBB(+1) may be an important determinant of neurotoxicity and contribute to an environment that favors the accumulation of misfolded proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173284 | PMC |
http://dx.doi.org/10.1083/jcb.200111034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!