The use of dietary isoflavone supplements by postmenopausal women with breast cancer is increasing. We investigated interactions between the soy isoflavone, genistein, and an antiestrogen, tamoxifen (TAM), on the growth of estrogen (E)-dependent breast cancer (MCF-7) cells implanted in ovariectomized athymic mice. We hypothesized that weakly estrogenic genistein negate/overwhelm the inhibitory effect of TAM on the growth of E-dependent breast tumors. Six treatment groups were used: control (C); 0.25 mg estradiol (E2) implant (E); E2 implant + 2.5 mg TAM implant (2.5 TE); E2 implant + 2.5 mg TAM implant + 1000 ppm genistein (2.5 TEG); E2 implant + 5 mg TAM implant (5 TE), and E2 implant +5 mg TAM implant +1000 ppm genistein (5 TEG). Treatment with TAM (2.5 TE and 5 TE) suppressed E2-stimulated MCF-7 tumor growth in ovariectomized athymic mice. Dietary genistein negated/overwhelmed the inhibitory effect of TAM on MCF-7 tumor growth, lowered E2 level in plasma, and increased expression of E-responsive genes (e.g., pS2, PR, and cyclin D1). Therefore, caution is warranted for postmenopausal women consuming dietary genistein while on TAM therapy for E-responsive breast cancer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

breast cancer
16
implant tam
16
tam implant
16
dietary genistein
12
athymic mice
12
implant implant
12
tam
9
implant
9
cancer mcf-7
8
mcf-7 cells
8

Similar Publications

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Leveraging Optical Anisotropy of the Morpho Butterfly Wing for Quantitative, Stain-Free, and Contact-Free Assessment of Biological Tissue Microstructures.

Adv Mater

January 2025

Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.

View Article and Find Full Text PDF

Quality of life for patients on oncology treatments in the Kingdom of Saudi Arabia: a systematic review.

J Pharm Policy Pract

January 2025

Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.

Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.

View Article and Find Full Text PDF

Cell-membrane targeting sonodynamic therapy combination with FSP1 inhibition for ferroptosis-boosted immunotherapy.

Mater Today Bio

February 2025

Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.

Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!