Because of their potent antigen-presenting capacity, dendritic cells (DC) have been used extensively in immunotherapy protocols. Our purpose was to functionally characterize mouse bone marrow-derived DC (BMDC) in vitro (in protein antigen- and hapten-specific assays) and in vivo (injecting soluble protein- and hapten-pulsed DC) to determine their suitability for the generation of T(h) cell responses. Furthermore, we determined whether there is cross-presentation on MHC class II molecules during in vivo protein and hapten sensitization. Co-culture of protein-pulsed [with hen egg lysozyme (HEL) or with pigeon cytochrome c (CYT)] DC with T cells from HEL- or CYT- sensitized mice induced antigen-specific T cell proliferation, but compared to cultured Langerhans cells (LC), BMDC required higher protein antigen-pulsing concentrations (100 microg and 1 mg/ml). In contrast, at low protein concentrations (10 microg/ml), BMDC stimulated an HEL-specific hybridoma very efficiently. Using an in vitro T cell proliferation assay and in vivo delayed-type hypersensitivity and contact sensitivity assays, we found that protein- and hapten-pulsed BMDC were able to sensitize syngeneic but not allogeneic hosts. Furthermore, if we injected BALB/c- and C57BL/6-derived HEL-pulsed BMDC into F1 mice, specific secondary proliferation of primed T cells occurred only when antigen-pulsed stimulator cells syngeneic to the injected BMDC were used. Using this model system we found that soluble proteins and haptens are presented by injected BMDC to host T cells in an MHC-restricted manner in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/14.5.493DOI Listing

Publication Analysis

Top Keywords

soluble proteins
8
proteins haptens
8
bone marrow-derived
8
cells
8
dendritic cells
8
cells mhc-restricted
8
mhc-restricted manner
8
protein- hapten-pulsed
8
cell proliferation
8
injected bmdc
8

Similar Publications

IL-17 as a putative hallmark of intense arthralgia and age-related serum immune mediator networks during acute chikungunya fever.

Inflamm Res

January 2025

Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, MG, Brazil.

Introduction: The present study aimed at evaluating the systemic profile and network connectivity of immune mediators during acute chikungunya fever (CHIKF) according to days of symptoms onset and ageing.

Methods: A total of 161 volunteers (76 CHIKF patients and 85 non-infected healthy controls) were enrolled.

Results And Discussion: Data demonstrated that a massive and polyfunctional storm of serum immune mediators was observed in CHIKF.

View Article and Find Full Text PDF

Effect of Immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS.

Mol Ther

January 2025

Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany. Electronic address:

Autoreactive antibodies (AAB) are currently being investigated as causative or aggravating factors during post-COVID. In this study we analyze the effect of immunoadsorption therapy on symptom improvement and the relationship with immunological parameters in post-COVID patients exhibiting symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) induced or aggravated by an SARS-CoV-2 infection. This observational study includes 12 post-COVID patients exhibiting a predominance of ME/CFS symptoms alongside increased concentrations of autonomic nervous system receptors (ANSR) autoantibodies and neurological impairments.

View Article and Find Full Text PDF

Despite notable advancements in cardiovascular medicine, morbidity and mortality rates associated with myocardial infarction (MI) remain high. The unfavourable prognosis and absence of robust post-MI protocols necessitate further intervention. In this comprehensive review, we will focus on well-established and novel biomarkers that can provide insight into the processes that occur after an ischemic event.

View Article and Find Full Text PDF

Background: Micronutrient deficiencies are common and play a significant role in the prognosis of many chronic diseases, including heart failure (HF), but their prevalence in HF is not well known. As studies have traditionally focused on causes originating within the intestines, exocrine pancreatic insufficiency (EPI) has been overlooked as a potential contributor. The exocrine pancreas enables the absorption of various (fat-soluble) micronutrients and may be insufficient in HF.

View Article and Find Full Text PDF

Effects of Maillard Reaction Durations on the Physicochemical and Emulsifying Properties of Chickpea Protein Isolate.

Foods

January 2025

Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

This study investigated the physicochemical and emulsifying properties of chickpea protein isolate (CPI)-citrus pectin (CP) conjugates formed via the Maillard reaction across varying reaction durations. CPI and CP were conjugated under controlled dry-heating conditions, and the resulting conjugates were characterized by measuring their particle size, zeta potential, solubility, thermal stability, surface hydrophobicity, and emulsifying properties. The results showed that as reaction duration increased, the particle size and zeta potential of the CPI-CP conjugates increased significantly, reaching a maximum particle size of 1311.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!