Type 1 diabetes results from autoimmune destruction of the insulin-producing pancreatic beta-cells. Evidence from our laboratory and others has suggested that the IDDM2 locus determines diabetes susceptibility by modulating levels of insulin expression in the thymus: the diabetes-protective class III alleles at a repeat polymorphism upstream of the insulin gene are associated with higher levels than the predisposing class I. To directly demonstrate the effect of thymic insulin expression levels on insulin-specific autoreactive T-cell selection, we have established a mouse model in which there is graded thymic insulin deficiency in linear correlation with insulin gene copy numbers, while pancreatic insulin remains unaltered. We showed that mice expressing low thymic insulin levels present detectable peripheral reactivity to insulin, whereas mice with normal levels show no significant response. We conclude that thymic insulin levels play a pivotal role in insulin-specific T-cell self-tolerance, a relation that provides an explanation for the mechanism by which the IDDM2 locus predisposes to or protects from diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.51.5.1383DOI Listing

Publication Analysis

Top Keywords

thymic insulin
16
insulin expression
12
iddm2 locus
12
insulin
10
expression levels
8
insulin-specific autoreactive
8
autoreactive t-cell
8
mechanism iddm2
8
insulin gene
8
insulin levels
8

Similar Publications

Hyperinsulinemia connects obesity, and a poor lipid profile, with type 2 diabetes (T2D). Here, we investigated consequences of insulin exposure for T cell function in the canonical autoimmunity of rheumatoid arthritis (RA). We observed that insulin levels correlated with the glycolytic index of CD4+ cells but suppressed transcription of insulin receptor substrates, which was inversely related to insulin sensitivity.

View Article and Find Full Text PDF

A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases.

Nat Commun

November 2024

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.

Red light optogenetic systems are in high demand for the precise control of gene expression for gene- and cell-based therapies. Here, we report a red/far-red light-inducible photoswitch (REDLIP) system based on the chimeric photosensory protein FnBphP (Fn-REDLIP) or PnBphP (Pn-REDLIP) and their interaction partner LDB3, which enables efficient dynamic regulation of gene expression with a timescale of seconds without exogenous administration of a chromophore in mammals. We use the REDLIP system to establish the REDLIP-mediated CRISPR-dCas9 (REDLIP) system, enabling optogenetic activation of endogenous target genes in mammalian cells and mice.

View Article and Find Full Text PDF

ZBTB7A as a therapeutic target for cancer.

Biochem Biophys Res Commun

December 2024

Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, China. Electronic address:

ZBTB7A, alternatively referred to Pokemon, FBI-1, LRF, and OCZF, is classified as a member of POK/ZBTB protein family of transcriptional repressors. ZBTB7A binds to targeted DNA via C-terminal zinc fingers and recruits co-compression complexes through N-terminal BTB ⁄ POZ domain to impede transcription. ZBTB7A regulates a range of fundamental biological processes such as cell proliferation, differentiation and apoptosis, B- and T-lymphocyte fate determination and thymic insulin expression and self-tolerance.

View Article and Find Full Text PDF

Autoimmune attack toward pancreatic β cells causes permanent loss of glucose homeostasis in type 1 diabetes (T1D). Insulin secretory granules store and secrete insulin but are also thought to be tissue messengers for T1D. Here, we show that the crinophagic granules (crinosome), a minor set of vesicles formed by fusing lysosomes with the conventional insulin dense-core granules (DCG), are pathogenic in T1D development in mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!