Leptin accelerates autoimmune diabetes in female NOD mice.

Diabetes

Cattedra di Immunologia, Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli "Federico II," Napoli, Italy.

Published: May 2002

We have recently shown that leptin, the product of the obese gene, can directly influence T-cell function. In the work presented here, we explored the role of leptin in the development of spontaneous autoimmunity in the nonobese diabetic (NOD) mouse, an animal model for the study of human insulin-dependent diabetes mellitus (type 1 diabetes). We found that expression of serum leptin increased soon before the onset of hyperglycemia and diabetes in susceptible females. A pathogenetic role of leptin was assessed by administering recombinant leptin to young female and male NOD mice. Intraperitoneal injections of leptin accelerated autoimmune destruction of insulin-producing beta-cells and significantly increased interferon-gamma production in peripheral T-cells. These findings indicate that leptin can favor proinflammatory cell responses and directly influence development of autoimmune disease mediated by Th1 responses.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.51.5.1356DOI Listing

Publication Analysis

Top Keywords

leptin
8
nod mice
8
directly influence
8
role leptin
8
leptin accelerates
4
accelerates autoimmune
4
diabetes
4
autoimmune diabetes
4
diabetes female
4
female nod
4

Similar Publications

Rapid weight gain in infancy is associated with an increased risk of later adiposity. Very rarely, however, exclusively breastfed infants experience excessive weight gain (EWG) during the period of exclusive breastfeeding (EBF) when breast milk is the only source of nutrition. We investigated growth and body composition at 36 months in children experiencing EWG during EBF.

View Article and Find Full Text PDF

Exercised gut microbiota improves vascular and metabolic abnormalities in sedentary diabetic mice through gut‒vascular connection.

J Sport Health Sci

January 2025

Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR 999077, China. Electronic address:

Background: Exercise elicits cardiometabolic benefits, reducing the risks of cardiovascular diseases and type 2 diabetes. This study aimed to investigate the vascular and metabolic effects of gut microbiota from exercise-trained donors on sedentary mice with type 2 diabetes and the potential mechanism.

Methods: Leptin receptor-deficient diabetic (db/db) and nondiabetic (db/m) mice underwent running treadmill exercise for 8 weeks, during which fecal microbiota transplantation (FMT) was parallelly performed from exercise-trained to sedentary diabetic (db/db) mice.

View Article and Find Full Text PDF

The (dys)regulation of energy storage in obesity.

Physiol Rev

January 2025

University of Zurich, Vetsuise Faculty, Institute of Veterinary Physiology, Zurich, Switzerland.

Metabolic energy stored mainly as adipose tissue is homeostatically regulated. There is strong evidence that human body weight () is physiologically regulated, i.e.

View Article and Find Full Text PDF

Preclinical development of a standardized extract of Ilex paraguariensis A.St.-Hil for the treatment of obesity and metabolic syndrome.

Pharmacol Res

January 2025

Centro de Inovação e Ensaios Pré-Clínicos. Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000 Florianópolis, Santa Catarina, Brazil. Electronic address:

Obesity is a global epidemic often associated with serious medical complications such as diabetes, hypertension and metabolic dysfunction-associated steatohepatitis. Considering the multifactorial nature of these diseases, medicinal plants could be a valuable therapeutic strategy as their phytoconstituents interact with multiple and relevant biological targets. In this context, Ilex paraguariensis emerges as a potential alternative to treat obesity and associated metabolic diseases since several studies have demonstrated its anti-inflammatory, anti-obesity and anti-diabetic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!