Metabolism of roxithromycin in phenobarbital-treated rat liver microsomes.

Acta Pharmacol Sin

Laboratory of Drug Metabolism and Pharmecokinetics, Shengyang Pharmaceutical University, Shenyang 110016, China.

Published: May 2002

Aim: To investigate the metabolism of roxithromycin (RXM) in rat liver microsomes and the possible effects of RXM and its metabolites on cytochrome P-450 (CYP450).

Methods: Liver microsomes of Wistar rats, induced by phenobarbital, were prepared using ultracentrifuge method. RXM in vitro metabolism was stu died with the microsome incubation. The metabolites were separated and assayed by li quid chromatography-tandem mass spectrometry (LC-MSn), and were further identified by comparison of their mass spectra and LC behavior to synthesized references.

Results: N-Mono- and N-di-demethyl metabolites a s well as O-dealkylated metabolite (erythromycin oxime) were detected in microsomal incubates. RXM and its metabolites expressed weak potency to form inactive complexes with CYP450.

Conclusion: N-Demethylation and oxime ether side chain O- dealkylation are main biotransformation pathways of RXM in phenobarbital-treated rat liver microsomes. Both routes were found to be NADPH-dependent. RXM and its metabolites showed weak inhibitory effects on CYP450.

Download full-text PDF

Source

Publication Analysis

Top Keywords

liver microsomes
16
rat liver
12
rxm metabolites
12
metabolism roxithromycin
8
phenobarbital-treated rat
8
rxm
6
metabolites
5
roxithromycin phenobarbital-treated
4
liver
4
microsomes
4

Similar Publications

A comprehensive characterization biotransformation of chlorinated paraffin by human and carp liver microsomes via liquid chromatography-high-resolution mass spectrometry and screening algorithm.

Environ Int

December 2024

State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MacaoChina Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

The chlorinated paraffin (CP) monomer 1,2,5,6,9,10-Hexachlorodecane (CP-4) was subjected to in vitro biotransformation using human and carp liver microsomes. Five types of CP-4 metabolites (OH-, keto-, enol-, aldehyde- and carboxy-CP-4) were identified in human liver microsomer while only mono-OH-CP-4 was found in the carp liver microsomes. Kinetic studies revealed that the formation of mono-, di-, tri-hydroxylated CP-4, keto-, enol-, and aldehyde-CP-4 in human liver microsomes was best described by substrate inhibition models, whereas the formation of carboxylated CP-4 metabolites best fit the Michaelis-Menten model.

View Article and Find Full Text PDF

Objective: The objective of this study was to determine the apparent intrinsic clearance (Cl) and fraction unbound in human liver microsomes (f) of 86 marketed central nervous system (CNS) drugs and to predict the in vivo hepatic blood clearance (CL).

Methods: Cl in human liver microsomes (HLM) was determined by substrate depletion, and f was determined by equilibrium dialysis. The relationship between lipophilicity (logP) and unbound intrinsic clearance (Cl) was explored using the Biopharmaceutical Drug Disposition Classification System (BDDCS) and Extended Clearance Classification System (ECCS).

View Article and Find Full Text PDF

The worldwide legalization of medicinal cannabis has led to an increased use of products made by commercial operators. These products often contain minor cannabinoids such as cannabinol (CBN) which are advertised to improve sleep. Products are also available in which CBN is combined with conventional therapies, with a common product containing both CBN and the widely used sleep-aid melatonin.

View Article and Find Full Text PDF

Structure-based development of N-Arylindole derivatives as Pks13 inhibitors against Mycobacterium tuberculosis.

Eur J Med Chem

December 2024

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China. Electronic address:

Targeting the biosynthetic pathway of mycolic acid is highly attractive to researchers in the field of novel anti-tubercular drug development. Pks13-TE is an essential catalytic component in the last assembling step of mycolic acid, and the co-crystal structures of the Pks13-TE-inhibitor complex provide insight into ligand recognition. Based on a structure-guided strategy, N-aryl indole derivatives were designed, synthesized, and evaluated for their antitubercular activities.

View Article and Find Full Text PDF

Advancing mitochondrial therapeutics: Synthesis and pharmacological evaluation of pyrazole-based inhibitors targeting the mitochondrial pyruvate carrier.

Eur J Med Chem

December 2024

Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA. Electronic address:

Inhibition of mitochondrial pyruvate transport via the mitochondrial pyruvate carrier (MPC) has shown beneficial effects in treating metabolic diseases, certain cancers, various forms of neurodegeneration, and hair loss. These benefits arise either from the direct inhibition of mitochondrial pyruvate metabolism or from the metabolic rewiring when pyruvate entry is inhibited. However, current MPC inhibitors are either nonspecific or possess poor pharmacokinetic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!