The synthesis and characterization of a cadmium(II) coordination polymer, [Cd(C(12)H(6)N(2)O(4)) x H(2)O](n)() (1), is reported. A single-crystal X-ray analysis shows that compound 1 presents a non-interpenetrating three-dimensional porous host containing one-dimensional hydrophilic channels, where guest water molecules reside. The strategy in designing the 3-D framework architecture is based on a combination of two building subunits: a porous two-dimensional grid of (4,4) topology and a metal dicarboxylate cluster chain. Both subunits are assembled from the coordination of a cadmium ion with a three-connecting organic modular ligand, 2,2'-bipyridyl-4,4'-dicarboxylic acid (H(2)bpdc). The results of thermogravimetric analysis and powder X-ray diffraction study show that the framework rigidity of compound 1 remains intact upon the removal of guest molecules, and maintains the thermal stability up to 440 degrees C. The second-row transition-metal ions are capable of engaging higher coordination modes (e.g., hepta- and octacoordination) because of their atomic sizes and intrinsic electron configurations. Our results show that the heptacoordinated cadmium center plays an important role in the overall framework rigidity and high thermal stability of compound 1. Crystal data for 1: Cd(C(12)H(6)N(2)O(4)) x H(2)O, triclinic, space group P1 macro, a = 6.7843(5) A, b = 9.3299(7) A, c = 9.4439(7) A, alpha = 104.629(1) degrees, beta = 92.324(1) degrees, gamma = 100.416(1) degrees, Z = 2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic011192hDOI Listing

Publication Analysis

Top Keywords

dicarboxylate cluster
8
cluster chain
8
22'-bipyridyl-44'-dicarboxylic acid
8
framework rigidity
8
thermal stability
8
[cdiibpdch2o]n robust
4
robust thermally
4
thermally stable
4
stable porous
4
framework
4

Similar Publications

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

Metabolomics Unveiled the Accumulation Characteristics of Taste Compounds During the Development and Maturation of Litchi Fruit.

Foods

January 2025

Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

Litchi is one of the ancient fruits that originated in China, renowned for its high nutrition and rich flavor, and Xianjinfeng (XJF) stands as one of the most notable varieties in terms of its flavor. Investigating the metabolic changes in taste compounds during fruit development offers deeper insights into the formation patterns of fruit quality. In this study, we conducted extensive metabonomic research on the accumulation patterns of taste compounds (carbohydrates, organic acids, and amino acids) across three developmental stages of XJF litchi.

View Article and Find Full Text PDF

A Fluorine-Functionalized Tb(III)-Organic Framework for Ba Detection.

Molecules

December 2024

School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.

The development of lanthanide-organic frameworks (Ln-MOFs) using for luminescence sensing and selective gas adsorption applications is of great significance from an energy and environmental perspective. This study reports the solvothermal synthesis of a fluorine-functionalized 3D microporous Tb-MOF with a face-centered cubic () topology constructed from hexanuclear clusters (TbO) bridged by fdpdc ligands, formulated as {[Tb(fdpdc)(-OH)(HO)]·4DMF} (), (fdpdc = 3-fluorobiphenyl-4,4'-dicarboxylate). Complex displays a 3D framework with the channel of 7.

View Article and Find Full Text PDF

Heterologous Production of Phenazines in the Biocontrol Agent C3.

J Agric Food Chem

January 2025

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

, an environmental bacterium, holds promise as a biocontrol agent due to its ability to produce bioactive compounds effective against plant pathogens, such as fungi, oomycetes, and Gram-positive bacteria. However, it lacks activity against Gram-negative bacteria. To address this, we applied new genetic tools to manipulate the phenazine biosynthetic gene cluster () from , converting to a robust producer of phenazine antibiotics.

View Article and Find Full Text PDF

As a distinctive class of porphyrin derivatives, corroles offer exceptional potential in phototherapy applications owing to their unique electronic structures. However, developing metal-organic frameworks (MOFs) that incorporate photosensitive corroles as functional ligands for synergistic phototherapy remains a formidable challenge. Herein, for the first time, the unique phosphorus corrole-based MOFs Cor(P)-Hf with (3,18)-connected gea topology are reported, which are constructed by Cs-symmetric dicarboxylate 3-connected linkers, 10-pentafluorophenyl-5,15-di(p-benzoate)phosphorus corrole (Cor(P)), and the peculiar D-symmetric 18-connected Hf-oxo clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!