The cyanogel system involving PdCl(4)(2-) and the mixed-valence complex [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-) is reported. The system has been characterized by UV-vis absorption, diffuse reflectance infrared, and resonance Raman spectroscopies. Gelation occurs through coordination of Pd(II) to the nitrogen atom of terminal cyanide ligands in the mixed-valence complex. Irradiation into the Fe(II) --> Pt(IV) intervalent electron transfer (IT) band of [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-) results in the formation of a variety of Prussian-blue-like species within the rigid cyanogel matrix. Photochemical and dark mechanisms involving coupled cyanide loss and Fe(II) oxidation are proposed for the formation of Prussian-blue-like species. The optical contrast between irradiated and nonirradiated regions of the gel enables photochemical image generation with at least 12 microm resolution. This capability is demonstrated through the production of a series of diffraction gratings in cyanogel samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic010710l | DOI Listing |
Nat Chem
January 2025
Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Monocyclic π-aromatic compounds are ubiquitous throughout almost all fields of natural sciences-as synthons in industrial processes, as ligands of metal complexes for catalysis or sensing and as bioactive molecules. Planar organocycles stand out through their specific way of overcoming electron deficiency by a non-localizable set of (4n + 2)π electrons. By contrast, all-metal aromatic monocycles are still rare, as metal atoms prefer to form clusters with multiply bonded atoms instead.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China. Electronic address:
J Colloid Interface Sci
March 2025
School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China. Electronic address:
Artificially synthesized nanozymes exhibit enzymatic activity similar to that of natural enzymes. However, in the complex tumor microenvironment, their diversity and catalytic activity show significant variations, limiting their effectiveness in catalytic therapy. Developing artificial enzymes with multiple enzymatic activities and spatiotemporal controllable catalytic abilities is of great clinical significance.
View Article and Find Full Text PDFJACS Au
November 2024
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
In this report, we present a structurally and spectroscopically characterized diorganocopper system in three distinct oxidation states: [CuCu] (), [CuCu] (), and [CuCu] (). These states are stabilized by a macrocyclic ligand scaffold featuring two square-planar coordination {C N }. We have analyzed the geometric and electronic structures using X-ray diffraction (XRD) and multiple spectroscopic methods including nuclear magnetic resonance (NMR), UV-vis, and electron paramagnetic resonance (EPR) spectroscopies, in combination with density functional theory (DFT) calculations.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and Biochemistry, Eastern Illinois University, Charleston, Illinois, 61920, USA.
In this contribution we are introducing a Variable Bridging Ligand (VBL) strategy for the preparation of heterometallic complexes. One synthetic challenge associated with other methods described in the existing literature stems from the fact that if there is a need to change the donor groups on a metalloligand, both the initial ligand and the resulting metalloligand must be synthesized all over again. To circumvent this problem, we reasoned that if a metal complex would have one labile ligand that can be easily replaced by various bridging polytopic species, several metalloligands can thus be generated starting from the same starting material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!