A new method for drug transport studies on pig nasal mucosa using a horizontal Ussing chamber.

J Pharm Sci

Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden.

Published: May 2002

The horizontal Ussing chamber method described here allows performance of transport studies on pig nasal respiratory mucosa under conditions simulating reality in that it mimics the air-mucosa interface. The transport of testosterone and mannitol through pig nasal mucosa in the horizontal Ussing chamber was investigated using both liquid and air mucosal interfaces. There were no significant differences in either the bioelectrical parameters (transmucosal electrical resistance, R, potential difference, PD, and short circuit current, I(sc)) or the apparent permeability (P(app)) of the mucosa to testosterone or mannitol between the liquid and air interface experiments. The histological study showed that the epithelial cell layer tolerates exposure to the air interface well. The P(app) equation was developed to correct for substance binding to the wall of the receiver chamber. The mean values +/- SD of R, PD, and I(sc) for the mucosae in the study were 75.0 +/- 28.0 Omegacm(2), (-4.53) +/- 3.46 mV and 58.6 +/- 28.8 microA/cm(2), respectively. The corrected P(app) for testosterone with and without the mucosal air interface were 9.82. 10(-6) +/- 11.41. 10(-6) cm/s and 32.24. 10(-6) +/- 31.12. 10(-6) cm/s, respectively. The P(app) values for mannitol with and without the air interface were 2.26. 10(-6) +/- 1.42. 10(-6) cm/s and 3.12. 10(-6) +/- 1.72. 10(-6) cm/s, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.10123DOI Listing

Publication Analysis

Top Keywords

air interface
16
10-6 +/-
16
10-6 cm/s
16
pig nasal
12
horizontal ussing
12
ussing chamber
12
transport studies
8
studies pig
8
nasal mucosa
8
mucosa horizontal
8

Similar Publications

Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.

View Article and Find Full Text PDF

Structural firefighters are exposed to an array of polycyclic aromatic hydrocarbons (PAHs) as a result of incomplete combustion of both synthetic and natural materials. PAHs are found in both the particulate and vapor phases in the firefighting environment and are significantly associated with acute and chronic diseases, including cancer. Using a fireground exposure simulator (FES) and standing mannequins dressed in four different firefighter personal protective equipment (PPE) conditions, each with varying levels of protective hood interface and particulate-blocking features, the efficacy of the hoods was assessed against the ingress of PAHs (specifically, naphthalene).

View Article and Find Full Text PDF

Whey-Derived Antimicrobial Anionic Peptide Interaction with Model Membranes and Cells.

Langmuir

January 2025

Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.

The present work focuses on one of the possible target mechanisms of action of the anionic antimicrobial peptide β-lg derived from trypsin hydrolysis of β-lactoglobulin. After confirmation of bactericidal activity against a pathogenic Gram(+) strain and demonstration of the innocuousness on a eukaryotic cell line, we investigated the interaction of β-lg with monolayers and bilayers of dpPC and dpPC:dpPG as model membranes of eukaryotic and bacterial membranes, respectively. In monolayers, compared to zwitterionic dpPC, in the negatively charged dpPC-dpPG, β-lg injected into the subphase penetrated up to higher surface pressures and showed greater extents of penetration with increasing concentration in the subphase.

View Article and Find Full Text PDF

Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.

View Article and Find Full Text PDF

The development of mechanically robust super-lubrication hydrogel materials with sustained lubricity at high contact pressures is challenging. In this work, inspired by the durable lubricity feature of the earthworm epidermis, a multilevel structural super-lubrication hydrogel (MS-SLH) system, the so-called lubricant self-pumping hydrogel, is developed. The MS-SLH system is manufactured by chemically dissociating a double network hydrogel to generate robust and wrinkled lubrication layer, and then laser etching was used to generate cylindrical texture pores as gland-like pockets for storing lubricants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!