Escherichia coli, Salmonella enterica, Klebsiella pneumoniaeand Klebsiella oxytocawere found to contain two D-tagatose 1,6-bisphosphate (TagBP)-specific aldolases involved in catabolism of galactitol (genes gatY gatZ) and of N-acetyl-galactosamine and D-galactosamine (genes kbaY kbaZ,also called agaY agaZ). The two aldolases were closely related (> or = 53.8% identical amino acids) and could substitute for each other in vivo. The catalytic subunits GatY or KbaY alone were sufficient to show aldolase activity. Although substantially shorter than other aldolases (285 amino acids, instead of 358 and 349 amino acids), these subunits contained most or all of the residues that have been identified as essential in substrate/product recognition and catalysis for class II aldolases. In contrast to these, both aldolases required subunits GatZ or KbaZ (420 amino acids) for full activity and for good in vivo and in vitro stability. The Z subunits alone did not show any aldolase activity. Close relatives of these new TagBP aldolases were found in several gram-negative and gram-positive bacteria, e.g., Streptomyces coelicolor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-002-0406-6DOI Listing

Publication Analysis

Top Keywords

amino acids
16
aldolase activity
8
aldolases
7
class d-tagatose-bisphosphate
4
d-tagatose-bisphosphate aldolases
4
aldolases enteric
4
enteric bacteria
4
bacteria escherichia
4
escherichia coli
4
coli salmonella
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!