A finite element flow solver was employed to compute unsteady flow past a three-dimensional Drosophila wing undergoing flapping motion. The computed thrust and drag forces agreed well with results from a previous experimental study. A grid-refinement study was performed to validate the computational results, and a grid-independent solution was achieved. The effect of phasing between the translational and rotational motions was studied by varying the rotational motion prior to the stroke reversal. It was observed that, when the wing rotation is advanced with respect to the stroke reversal, the peak in the thrust forces is higher than when the wing rotation is in phase with the stroke reversal and that the peak thrust is reduced further when the wing rotation is delayed. As suggested by previous authors, we observe that the rotational mechanism is important and that the combined translational and rotational mechanisms are necessary to describe accurately the force time histories and unsteady aerodynamics of flapping wings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.205.10.1507 | DOI Listing |
J Clin Med
January 2025
Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea.
Although reversible cerebral vasoconstriction syndrome (RCVS) is a rare disease, the condition may occur with COVID-19 infection. We aimed to investigate the clinical characteristics of RCVS through a systematic review of case reports and case series that reported on COVID-19-related RCVS. : A literature search was performed in PubMed (MEDLINE), SCOPUS, and Web of Science.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Department of Special Examination, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305 Tianmushan Road, Hangzhou City, 310013, Zhejiang, China.
Cerebral ischemia-reperfusion injury (CIRI), which stays unresolved in the clinic, occurs after recanalization of blood vessels serving brain tissues in acute ischemic stroke patients and can result in massive brain cell death, and cell ferroptosis contributes greatly to this process. Our research firstly found that TNFSF9 expression harbored diagnostic value on CIRI patients and intended to further investigate its regulatory mechanism in CIRI, which might facilitate its diagnostic and therapeutic application in the clinic. The level of TNSF9 mRNA was augmented in the plasma of CIR patients, and its silence impeded ferroptosis, apoptosis, and release of inflammatory mediators of BMECs with OGD/R treatment.
View Article and Find Full Text PDFJ Exp Med
March 2025
Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
RNA-sensing TLRs are strategically positioned in the endolysosome to detect incoming nonself RNA. RNase T2 plays a critical role in processing long, structured RNA into short oligoribonucleotides that engage TLR7 or TLR8. In addition to its positive regulatory role, RNase T2 also restricts RNA recognition through unknown mechanisms, as patients deficient in RNase T2 suffer from neuroinflammation.
View Article and Find Full Text PDFForensic Sci Res
December 2024
Córdoba, Argentina.
Unlabelled: The characteristics of commercially available thermochromic ink pens have been studied and described since their appearance in 2006. The wide variety of brands and models now available warrants further study using an expanded sample size, to differentiate the general characteristics from specific characteristics. Herein, the ink strokes of 15 pens purchased in the province of Córdoba, Argentina were studied.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
In a step towards generating switchable MRI cellular labels, we demonstrate in-situ field switching of micron scale metamagnetic Iron-Rhodium (FeRh) thin film particles. A thin-film (200 nm) FeRh sample was fabricated and patterned into an array of progressively smaller squares with sizes ranging from 500 μm down to 1 μm. The large first order phase change from antiferromagnetic to ferromagnetic state was characterized using vibrating sample magnetometry, magnetic force microscopy, and MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!