Activation of G protein-coupled receptors is thought to involve disruption of intramolecular interactions that stabilize their inactive conformation. Such disruptions are induced by agonists or by constitutively active mutations. In the present study, novel potent inverse agonists are described to inhibit the constitutive activity of 5-HT(4) receptors. Using these compounds and specific receptor mutations, we investigated the mechanisms by which inverse agonists may reverse the disruption of intramolecular interactions that causes constitutive activation. Two mutations (D100(3.32)A in transmembrane domain (TMD)-III and F275(6.51)A in TMD-VI) were found to completely block inverse agonist effects without impairing their binding properties nor the molecular activation switches induced by agonists. Based on the rhodopsin model, we propose that these mutated receptors are in equilibrium between two states R and R* but are unable to reach a third "silent" state stabilized by inverse agonists. We also found another mutation in TMD-VI (W272(6.48)A) that stabilized this silent state. This mutant remained fully activated by agonists. Molecular modeling indicated that Asp-100, Phe-275, and Trp-272 might constitute a network required for stabilization of the silent state by the described inverse agonists. However, this network is not necessary for agonist activity.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M202539200DOI Listing

Publication Analysis

Top Keywords

inverse agonists
20
agonists
9
disruption intramolecular
8
intramolecular interactions
8
induced agonists
8
silent state
8
inverse
6
5-ht4 receptor
4
receptor transmembrane
4
transmembrane network
4

Similar Publications

Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered.

View Article and Find Full Text PDF

Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer.

Cancers (Basel)

January 2025

Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.

The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters.

View Article and Find Full Text PDF

GLP-1RA Use and Thyroid Cancer Risk.

JAMA Otolaryngol Head Neck Surg

January 2025

OptumLabs, Eden Prairie, Minnesota.

Importance: The increasing use of glucagon-like peptide-1 receptor agonists (GLP-1RA) demands a better understanding of their association with thyroid cancer.

Objective: To estimate the risk of incident thyroid cancer among adults with type 2 diabetes being treated with GLP-1RA vs other common glucose-lowering medications.

Design, Setting, And Participants: This was a prespecified secondary analysis of a target trial emulation of a comparative effectiveness study using claims data for enrollees in commercial, Medicare Advantage, and Medicare fee-for-service plans across the US.

View Article and Find Full Text PDF

Aims: Glucagon-like peptide 1 receptor agonists (GLP1RA), used to treat type 2 diabetes and obesity, have been associated with off-target behavioural effects. We systematically assessed genetic variation in the GLP1R locus for impact on mental ill-health (MIH) and cardiometabolic phenotypes across diverse populations within UK Biobank.

Materials And Methods: All genetic variants with minor allele frequency >1% in the GLP1R locus were investigated for associations with MIH phenotypes and cardiometabolic phenotypes.

View Article and Find Full Text PDF

Synthesis, Pharmacological Characterization, and Binding Mode Analysis of 8-Hydroxy-Tetrahydroisoquinolines as 5-HT Receptor Inverse Agonists.

ACS Chem Neurosci

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.

The serotonin 7 receptor (5-HTR) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gα protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!