This paper describes a quantitative and sensitive chemical assay for cereulide, the heat-stable emetic toxin produced by Bacillus cereus. The methods previously available for measuring cereulide are bioassays that give a toxicity titer, but not an accurate concentration. The dose of cereulide causing illness in humans is therefore not known, and thus safety limits for cereulide cannot be indicated. We developed a quantitative and sensitive chemical assay for cereulide based on high-performance liquid chromatography (HPLC) connected to ion trap mass spectrometry. This chemical assay and a bioassay based on boar sperm motility inhibition were calibrated with purified cereulide and with valinomycin, a structurally similar cyclic depsipeptide. The boar spermatozoan motility assay and chemical assay gave uniform results over a wide range of cereulide concentrations, ranging from 0.02 to 230 microg ml(-1). The detection limit for cereulide and valinomycin by HPLC-mass spectrometry was 10 pg per injection. The combined chemical and biological assays were used to define conditions and concentrations of cereulide formation by B. cereus strains F4810/72, NC7401, and F5881. Cereulide production commenced at the end of logarithmic growth, but was independent of sporulation. Production of cereulide was enhanced by incubation with shaking compared to static conditions. The three emetic B. cereus strains accumulated 80 to 166 microg of cereulide g(-1) (wet weight) when grown on solid medium. Strain NC7401 accumulated up to 25 microg of cereulide ml(-1) in liquid medium at room temperature (21 +/- 1 degrees C) in 1 to 3 days, during the stationary growth phase when cell density was 2 x 10(8) to 6 x 10(8) CFU ml(-1). Cereulide production at temperatures at and below 8 degrees C or at 40 degrees C was minimal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC127581PMC
http://dx.doi.org/10.1128/AEM.68.5.2479-2483.2002DOI Listing

Publication Analysis

Top Keywords

chemical assay
16
cereulide
15
emetic toxin
8
bacillus cereus
8
quantitative sensitive
8
sensitive chemical
8
assay cereulide
8
cereulide valinomycin
8
cereus strains
8
cereulide production
8

Similar Publications

Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.

View Article and Find Full Text PDF

Motivation: The accurate prediction of O-GlcNAcylation sites is crucial for understanding disease mechanisms and developing effective treatments. Previous machine learning models primarily relied on primary or secondary protein structural and related properties, which have limitations in capturing the spatial interactions of neighboring amino acids. This study introduces local environmental features as a novel approach that incorporates three-dimensional spatial information, significantly improving model performance by considering the spatial context around the target site.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!