Pinkwater is generated during the handling and demilitarization of conventional explosives. This listed hazardous waste contains dissolved trinitrotoluene (TNT) and cyclo trimethylene trinitramine (RDX), as well as some by-products. It represents the largest quantity of hazardous waste generated by the operations support command, and its treatment produces a by-product hazardous waste--spent granular activated carbon (GAC). Anaerobic treatment in a fluidized bed reactor (FBR) containing GAC is an emerging technology for organic compounds resistant to aerobic biological treatment. Bench scale batch studies using an anaerobic consortium of bacteria fed ethanol as the sole electron donor demonstrated the transformation of TNT to triaminotoluene (TAT), which then degrades to undetectable end products. RDX is sequentially degraded to nitroso-, dinitroso-, trinitroso- and hydroxylaminodinitroso-RDX before the triazine ring is presumably cleaved, forming methanol and formaldehyde as major end products. The bacterial members of the anaerobic consortia are typically found in sludge digesters at municipal or industrial wastewater treatment plants. The results of a pilot scale evaluation of this process that was conducted at McAlester Army Ammunition Plant (MCAAP, OK) over a 1 year period are reported in this paper. The pilot test experienced wide fluctuations in influent concentrations, representative of true field conditions. The FBR was a 20 in. (51 cm) diameter column with an overall height of 15 ft (4.9 m) and a bed of GAC occupying 11 ft (3.4m). Water was recirculated through the column continuously at 30 gpm (114 l/min) to keep the GAC fluidized, and pinkwater for treatment was pumped into the recirculation line. Several flowrates were evaluated to determine the proper mass loading rate (mass of TNT and RDX per reactor volume per time, kg/m(3) per day) which the reactor could handle while meeting the discharge limitations. Based on the tests performed, a 1 gpm (3.785 l/min) rate in the 188 gal (710 l) volume of the fluidized GAC bed was determined to consistently meet the discharge requirements. This information was used to develop a cost estimate for a system capable of treating the total effluent currently produced at MCAAP. The cost of installing and operating this system was compared to the cost of GAC adsorption for MCAAP at current pinkwater generation rates. The GAC-FBR system had an annual operating cost of approximately US$ 19K, compared to US$ 71 K annually for GAC adsorption. When including the amortization of the capital equipment required for the GAC-FBR, the payback period for installation of this new process was estimated at 3.7 years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3894(01)00375-2 | DOI Listing |
Sci Total Environ
January 2025
Leiden University, Institute of Environmental Science - Industrial Ecology, Van Steenisgebouw, Einsteinweg 2, 2333 CC Leiden, the Netherlands. Electronic address:
In this study, we compared the Sol-Char sanitation system with an Anaerobic Digestion (AD) system using Life Cycle Assessment (LCA) to evaluate their environmental impacts. Since both systems offer opportunities for human waste treatment and resource recovery, understanding their performance is crucial. This comparison aims to determine their environmental impacts while considering diverse factors, such as energy production and nutrient recovery.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Engineering, Hangzhou Normal University, Hangzhou, 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. Electronic address:
Biomass starvation is common in biological wastewater treatment. As a social trait of microbial community, how quorum sensing (QS) regulated bacterial trade-off through interactions after starvation remains unclear. This study deciphered the mechanism of anaerobic ammonium oxidation (anammox) consortia in response to starvation, including reducing extracellular electron transfer (EET), adenosine 5'-triphosphate (ATP) content and amino acid metabolism.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
High salts concentrations in wastewater hinder its biological treatment. Recent research has investigated the inhibitory effect of salinity on the anammox process, mainly focusing on NaCl. Thus, the inhibition caused by multi-electrolytes salinity on freshwater anammox bacteria remains unclear.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:
Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!