Intestinal and hepatic response to combined partial hepatectomy and small bowel resection in mice.

Am J Surg

Division of Pediatric Surgery, Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.

Published: April 2002

Background: Both partial-hepatectomy (PHx) and massive small bowel resection (SBR) are strong mitogenic signals to the remnant liver and intestine, respectively. This study tested the hypothesis that PHx was an additive signal for intestinal adaptation after massive SBR.

Methods: Male mice underwent either sham SBR or 50% proximal SBR. Mice from these two groups were then subjected to a 70% PHx or sham PHx. After 3 days, parameters of intestinal adaptation and liver regeneration were recorded in the remnant intestine and liver, respectively.

Results: Intestinal adaptation following SBR occurred normally, but was not enhanced after concomitant PHx. On the other hand, SBR impaired the regenerative ability of the liver following PHx.

Conclusions: Intestinal adaptation after SBR takes priority over liver regeneration after PHx. These data implicate a hierarchy with regard to adaptive alterations to organ loss and endorse an important role for the intestinal mucosa in the regulation of hepatic regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0002-9610(02)00809-7DOI Listing

Publication Analysis

Top Keywords

intestinal adaptation
16
small bowel
8
bowel resection
8
liver regeneration
8
adaptation sbr
8
intestinal
6
phx
6
sbr
6
liver
5
intestinal hepatic
4

Similar Publications

Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.

View Article and Find Full Text PDF

Thrombin promotes the proliferation and function of CD8+ T cells. To test if thrombin prevents exhaustion and sustains antiviral T cell activity during chronic viral infection, we depleted the thrombin-precursor prothrombin to 10% of normal levels in mice prior to infection with the clone 13 strain of lymphocytic choriomeningitis virus. Unexpectedly, prothrombin insufficiency resulted in 100% mortality after infection that was prevented by depletion of CD8+ T cells, suggesting that reduced availability of prothrombin enhances virus-induced immunopathology.

View Article and Find Full Text PDF

Osmoregulation affects elimination of microplastics in fish in freshwater and marine environments.

Sci Total Environ

January 2025

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan.

In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments.

View Article and Find Full Text PDF

is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm .

Appl Environ Microbiol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.

View Article and Find Full Text PDF

Weaning is essential for foal growth and development. We determined the intestinal flora structure of donkey foals at the end of weaning (PreW_4d) and three stages after weaning (PostW_4d, PostW_8d, and PostW_15d) to explore the effects of weaning on intestinal development of donkey foals. The results showed that the main microbial flora in the gut of the donkey foal were Firmicutes and Bacteroides, and the proportion of Firmicutes gradually increased with weaning, which was an important reflection of the donkey foal's adaptability to the transition from lactose liquid feed to plant fiber solid feed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!