H-rev107-1 is a growth inhibitory RAS target gene capable of suppressing anchorage independent growth in vitro and in vivo. Using a tumour tissue array with 241 matched tumour and normal tissue cDNA pools, we found down-regulation of H-REV107-1 in 7 out of 14 ovary-derived cDNAs. RT-PCR analysis and immunohistochemical investigation confirmed expression of H-REV107-1 in normal ovarian epithelial cells but down-regulation in high grade ovarian carcinomas. H-REV107-1 is also strongly expressed in immortalized rat and human ovarian epithelial cells in vitro, but suppressed in transformed cells by two different mechanisms. KRAS-transformed rat ovarian cells and PA1 teratocarcinoma cells, reversibly repress H-REV107-1 via MAP/ERK signaling. In contrast, treatment of A27/80 and OVCAR-3 epithelial ovarian cancer cells with IFNgamma stimulated H-REV107-1 expression. In NIH3T3 cells harbouring an estrogen-inducible IRF-1, H-rev107-1 is directly induced after activation of IRF-1, indicating that H-rev107-1 is a target of IRF-1. Stimulation of H-REV107-1 expression was also observed in ovarian epithelial cells suggesting that IRF-1 is involved in H-REV107-1 regulation in human ovarian epithelium. In the IFNgamma-sensitive cell line A27/80, H-REV107-1 suppresses colony formation. A27/80 and OVCAR-3 cells overexpressing H-REV107-1 protein underwent apoptosis. These results demonstrate down-regulation of the class II tumour suppressor H-REV107-1 in human ovarian carcinomas and suggest an involvement of H-REV107-1 in interferon-dependent cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1205377 | DOI Listing |
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFBiol Res
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
UMass Memorial Medical Center, Memorial Campus, 119 Belmont St, Worcester, MA, 01605, USA.
Purpose: Induction of meiotic competence is a major goal of the controlled ovarian stimulation used in ART. Do factors intrinsic to the oocyte contribute to oocyte maturation? Deletions in mtDNA accumulate in long-lived post mitotic tissues and are found in human oocytes. If oogenesis cleanses the germline of deleterious deletions in mtDNA, meiotically competent oocytes should contain lower levels of mtDNA deletions vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!