According to the ternary complex model of G-protein linkage to receptors, agonists increase the affinity of the receptors for the G protein. The model predicts that an endogenous agonist's constant of inhibition toward an agonist radioligand is lower than that toward an antagonistic radioligand. The authors hypothesized that competition from endogenous dopamine in striatum of living mice should have a greater effect on the binding of the D2,3 partial agonist N-[3H]propylnorapomorphine than on the binding of the D2,3 antagonist [(11)C]raclopride. The baseline binding potential (pB(0)), defined as the ratio of bound-to-unbound ligand in the absence of competition from endogenous dopamine, was simultaneously measured in mouse striatum for [(11)C]raclopride (pB(0) = 8.5) and N-[(3)H]propylnorapomorphine (p'B(0) = 5.3). The baseline was established by treatment with alpha-methyl-p-tyrosine and reserpine. Relative to these baseline values in saline-treated mice, the pB of N-[(3)H]propylnorapomorphine decreased 52% whereas the pB of [(11)C]raclopride decreased only 30%, indicating greater sensitivity of the former compound to inhibition by synaptic dopamine. Furthermore, amphetamine decreased the pB of N-[(3)H]propylnorapomorphine to a greater extent (73%) than that of [(11)C]raclopride (43%) relative to the reserpine condition. For both radioligands, the occupancy of the dopamine receptors by endogenous agonist obeyed Michaelis-Menten kinetics over a wide range of agonist concentrations established by the pharmacologic treatments. The apparent inhibition constant of endogenous dopamine depended on the dopamine occupancy and decreased to a value 1.66 times greater for N-[(3)H]propylnorapomorphine than for [(11)C]raclopride at its highest occupancies. The results are consistent with the hypothesis that agonist binding is more sensitive than antagonist binding to competition from endogenous dopamine. Therefore, dopamine agonist ligands may be superior to benzamide antagonist ligands for the estimation of dopamine receptor occupancy by endogenous synaptic dopamine. The analysis of the effect of dopamine occupancy on the inhibition of N-[(3)H]propylnorapomorphine binding indicated a limited supply of G protein with a maximum ternary complex fraction of 40% of maximum agonist binding capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004647-200205000-00011DOI Listing

Publication Analysis

Top Keywords

endogenous dopamine
20
dopamine
13
competition endogenous
12
dopamine receptors
8
mouse striatum
8
endogenous
8
occupancy endogenous
8
ternary complex
8
binding d23
8
n-[3h]propylnorapomorphine binding
8

Similar Publications

This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.

View Article and Find Full Text PDF

E-waste contains hazardous chemicals that may be a direct health risk for workers involved in recycling. We conducted an untargeted metabolomics analysis of urine samples collected from male e-waste processing workers to explore metabolic changes associated with chemical exposures in e-waste recycling in Belgium, Finland, Latvia, Luxembourg, the Netherlands, Poland, and Portugal. Questionnaire data and urine samples were obtained from workers involved in the processing of e-waste (sorting, dismantling, shredding, pre-processing, metal, and non-metal processing), as well as from controls with no known occupational exposure.

View Article and Find Full Text PDF

Cannabinoid-based Pharmacology for the Management of Substance Use Disorders.

Curr Top Behav Neurosci

January 2025

Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.

In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.

View Article and Find Full Text PDF

Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention.

View Article and Find Full Text PDF

Plausible therapeutic effects of melatonin and analogs in the dopamine-associated pathophysiology of bipolar disorder.

J Psychiatr Res

January 2025

Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand. Electronic address:

Bipolar disorder (BD) is a significant neuropsychiatric condition characterized by marked psychological mood disturbances. Despite extensive research on the symptomatology of BD, the mechanisms underlying its development and presentation remain unknown. Consequently, potential treatments are limited, and existing medications often cause significant side effects, leading to treatment discontinuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!