A bHLH-type transcription factor, Mesp2, plays an essential role in somite segmentation in mice. Zebrafish mespb (mesp-b), a putative homologue of mouse Mesp2, is transiently expressed in the rostral presomitic mesoderm similarly to Mesp2. To determine whether zebrafish mespb is a functional homologue of mouse Mesp2, zebrafish mespb was introduced into the mouse Mesp2 locus by homologous recombination. Introduced mespb almost rescued the Mesp2 deficiency in the homozygous mespb knockin mouse, indicating that mespb is a functional homologue of mouse Mesp2. Segmented somites were clearly observed although the partial fusion of the vertebral columns still occurred. Interestingly, however, the nature and dosage of the mespb gene affected the rescue event. A mouse line, which has a hypomorphic Mesp2 allele generated by the introduction of neo-mespb, gave rise to an epithelial somite without normal rostrocaudal (RC) polarity. RC polarity was also lacking in the presomitic mesoderm. The defects in RC polarity were determined by the altered expressions of Uncx4.1 and Dll1 in the segmented somites and presomitic mesoderm, respectively. In contrast, the expression of EphA4 (Epha4), lunatic fringe or protocadherin, thought to be involved in segment border formation, was fairly normal in hypomorphic mutant embryos. These results suggest that the Mesp family of transcription factors is involved in both segment border formation and establishment of RC polarity through different genetic cascades.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.129.10.2473DOI Listing

Publication Analysis

Top Keywords

mouse mesp2
16
segment border
12
border formation
12
zebrafish mespb
12
homologue mouse
12
presomitic mesoderm
12
rostrocaudal polarity
8
mesp2
8
mespb functional
8
functional homologue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!