Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant.

Mol Microbiol

202A Johnson Pavilion, Department of Microbiology, School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia 19104-6076, USA.

Published: April 2002

In Escherichia coli, phase variation of the outer membrane protein Ag43 encoded by the agn43 gene is mediated by DNA methylation and the global regulator OxyR. Transcription of agn43 occurs (ON phase) when three Dam target sequences in the agn43 regulatory region are methylated, which prevents the repressor OxyR from binding. Conversely, transcription is repressed (OFF) when these Dam target sequences are unmethylated and OxyR binds. A change in expression phase requires a concomitant change in the DNA methylation state of these Dam target sequences. To gain insight into the process of inheritance of the expression phase and the DNA methylation state, protein-DNA interactions at agn43 were examined. Binding of OxyR at agn43 was sufficient to protect the three GATC sequences contained within its binding site from Dam-dependent methylation in vitro, suggesting that no other factors are required to maintain the unmethylated state and OFF phase. To maintain the methylated state of the ON phase, however, Dam must access the hemimethylated agn43 region after DNA replication, and OxyR binding must not occur. OxyR bound hemimethylated agn43 DNA, but the affinity was severalfold lower than for unmethylated DNA. This presumably contributes to the maintenance of the methylated state but, at the same time, may allow for infrequent OxyR binding and a switch to the OFF phase. Hemimethylated agn43 DNA was also a binding substrate for the sequestration protein SeqA. Thus, SeqA, OxyR and Dam may compete for the same hemimethylated agn43 DNA that is formed after DNA replication in an ON phase cell. In isolates with a mutant seqA allele, agn43 phase variation rates were altered and resulted in a bias to the OFF phase. In part, this can be attributed to the observed decrease in the level of DNA methylation in the seqA mutant.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2002.02918.xDOI Listing

Publication Analysis

Top Keywords

dna methylation
16
hemimethylated agn43
16
phase variation
12
dam target
12
target sequences
12
oxyr binding
12
agn43 dna
12
phase
10
agn43
10
dna
10

Similar Publications

DNA Methylation of Somatic Tissues in Oysters is Influenced by Sex and Heredity.

Mar Biotechnol (NY)

January 2025

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.

The influence of sex and heredity on DNA methylation in the somatic tissues of mice has been well-documented, with similar hereditary effects reported in honeybees. However, the extent to which these factors affect DNA methylation in molluscan somatic tissues remains poorly understood. In this study, we investigated genomic DNA methylation patterns in the adductor muscle of two genetically distinct oyster strains using whole-genome bisulfite sequencing (WGBS).

View Article and Find Full Text PDF

DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer.

Acta Pharm Sin B

December 2024

Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.

encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.

View Article and Find Full Text PDF

Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is the most common type of breast cancer, primarily affecting women in the United States and across the world. This review summarizes key concepts related to IDC causes, treatment approaches, and the identification of biological markers for specific prognoses. Furthermore, we reviewed many studies, including those involving patients with IDC and ductal carcinoma in situ (DCIS) that progressed to IDC.

View Article and Find Full Text PDF

Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!