The active involvement of physical exercise in the evolution of a variety of cancers is well documented. However, its role in solid leukemia tumor development is essentially unknown. Solid leukemia tumor cells were transplanted into 21 hybrid BDF1 control mice, exercise-trained mice that did not exercise during leukemia and exercise-trained mice that exercised during leukemia. The tumor size of the continuously exercising group was ~50% of that of control and exercise-terminated animals 18 days after the transplantation. The activity of antioxidant enzymes and the levels of lipid peroxidation and 8-hydroxy-2'-deoxyguanosine were not different in the tumors of the three groups. The level of carbonylated proteins was smaller in tumors of continuously exercising animals. The mutant form of cell regulatory protein p53 and vascular endothelial growth factor were present in similar amounts in the tumor cells of each group. On the other hand, the protooncogene Ras and I-kappaB proteins were present in higher concentrations in tumors of continuously exercising rats. The present data suggest that exercise during leukemia attenuates the development of tumors in mice. The selective alteration of regulatory proteins might play a role in the beneficial effects of exercise during leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1089/152308602753625979DOI Listing

Publication Analysis

Top Keywords

leukemia tumor
16
solid leukemia
12
exercise leukemia
12
continuously exercising
12
physical exercise
8
tumor cells
8
exercise-trained mice
8
tumors continuously
8
leukemia
7
tumor
5

Similar Publications

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.

View Article and Find Full Text PDF

[Clinical characteristics and prognosis of acute erythroleukemia in children].

Zhongguo Dang Dai Er Ke Za Zhi

January 2025

Department of Children's Hematology and Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

Objectives: To investigate the clinical characteristics and prognosis of acute erythroleukemia (AEL) in children.

Methods: A retrospective analysis was conducted on the clinical data, treatment, and prognosis of 8 children with AEL treated at the First Affiliated Hospital of Zhengzhou University from January 2013 to December 2023.

Results: Among the 7 patients with complete bone marrow morphological analysis, 4 exhibited trilineage dysplasia, with a 100% incidence of erythroid dysplasia (7/7), a 71% incidence of myeloid dysplasia (5/7), and a 57% incidence of megakaryocytic dysplasia (4/7).

View Article and Find Full Text PDF

Anti-CD19 chimeric antigen receptor T cells (CAR) are a well-established treatment option for children and young adults suffering from relapsed/refractory B-lineage acute lymphoblastic leukemia. Bridging therapy is used to control disease prior to start of lymphodepletion before CAR infusion and thereby improve efficacy of CAR therapy. However, the effect of different bridging strategies on outcome, side effects and response to CAR therapy is still poorly understood.

View Article and Find Full Text PDF

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!