Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The regulation of cytokine gene transcription and biosynthesis involves the reduction-oxidation (redox)-sensitive nuclear factor-kappaB (NF-kappaB), whose activation is mediated by an upstream kinase that regulates the phosphorylation of inhibitory-kappaB (IkappaB). It was hypothesized that lipopolysaccharide (LPS)-induced biosynthesis of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in vitro is regulated by redox equilibrium. In alveolar epithelial cells, we investigated the role of L-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in GSH biosynthesis, 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), which inhibits glutathione oxidized disulfide reductase, pyrrolidine dithiocarbamate (PDTC), an antioxidant/prooxidant thiuram, and N-acetyl-L-cysteine (NAC), an antioxidant and GSH precursor, in regulating LPS-induced cytokine biosynthesis and IkappaB-alpha/NF-kappaB signaling. BSO blockaded the phosphorylation of IkappaB-alpha, reduced its degradation, and inhibited NF-kappaB activation, besides augmenting LPS-mediated biosynthesis of cytokines. BCNU up-regulated LPS-induced release of cytokines, an effect associated with partial phosphorylation/degradation of IkappaB-alpha and inhibition of the DNA binding activity. PDTC, which partially affected LPS-induced IkappaB-alpha phosphorylation/degradation, otherwise blockading NF-kappaB activation, reduced LPS-dependent up-regulation of cytokine release. Pretreatment with BSO did not abolish the NAC-dependent reduction of LPS-induced cytokine release, despite the fact that NAC marginally amplified IkappaB-alpha phosphorylation/degradation and suppressed NF-kappaB activation. These results indicate that cytokines are redox-sensitive mediators and that the IkappaB-alpha/NF-kappaB pathway is redox-sensitive and differentially implicated in mediating redox-dependent regulation of LPS-induced release of proinflammatory cytokines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/152308602753625942 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!