EG-VEGF and the concept of tissue-specific angiogenic growth factors.

Semin Cell Dev Biol

Department of Molecular Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.

Published: February 2002

The endothelium of the vascular beds is extremely diverse and exquisitely distinct with respect to the specific tissue compartment served by the vessels. The molecular identity and function of the instructive signals that tailor the tissue-specific endothelial phenotype have been largely undefined. Presumably, a complex, integrated network of signals derived from the tissue parenchyma and/or stromal compartments is responsible. Recently, we identified a novel angiogenic mitogen, endocrine-gland-derived vascular endothelial growth factor, EG-VEGF, with a selective activity and very distinct expression pattern. Human EG-VEGF is expressed by steroid producing cells in the adrenal gland, placenta, testis and ovary, and is a mitogen for endothelial cells derived from these microvascular beds. EG-VEGF may represent the first of a novel class of tissue-specific angiogenic factors that function to regulate and fine-tune endothelial cell growth, structural and functional properties. The identification of other selective angiogenic molecules will allow insight into exciting, basic developmental issues and increase our armamentarium of factors for therapeutic angiogenic and anti-angiogenic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1006/scdb.2001.0284DOI Listing

Publication Analysis

Top Keywords

tissue-specific angiogenic
8
angiogenic
5
eg-vegf
4
eg-vegf concept
4
concept tissue-specific
4
angiogenic growth
4
growth factors
4
factors endothelium
4
endothelium vascular
4
vascular beds
4

Similar Publications

We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.

View Article and Find Full Text PDF

Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.

View Article and Find Full Text PDF

Research on SARS-CoV-2, the viral pathogen that causes COVID-19, has identified angiotensin converting enzyme 2 (ACE2) as the primary viral receptor. Several genes that encode viral cofactors, such as TMPRSS2, NRP1, CTSL, and possibly KIM1, have since been discovered. Glutamyl aminopeptidase (APA), encoded by the gene ENPEP, is another cofactor candidate due to similarities in its biological role and high correlation with ACE2 and other human coronavirus receptors, such as aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4).

View Article and Find Full Text PDF

Integrins, a group of transmembrane receptors, play a crucial role in mediating the interactions between cells and extracellular matrix (ECM) proteins. The intracellular signaling initiated by these cell-matrix interactions in leukocytes mediates many essential cellular processes such as survival, migration, metabolism, and other immunological functions. Macrophages, as phagocytes, participate in both proinflammatory and anti-inflammatory processes, including progression.

View Article and Find Full Text PDF

Endothelial Pim3 kinase protects the vascular barrier during lung metastasis.

Nat Commun

December 2024

Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.

Endothelial cells (ECs) form a tissue-specific barrier for disseminating cancer cells in distant organs. However, the molecular regulation of the ECs in the metastatic niche remains unclear. Here, we analyze using scRNA-Seq, the transcriptional reprogramming of lung ECs six hours after the arrival of melanoma cells in mouse lungs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!