We conducted two event-related functional magnetic resonance imaging (fMRI) experiments to investigate the neural substrates of visual object recognition in humans. We used a repetition-priming method with visual stimuli recurring at unpredictable intervals, either with the same appearance or with changes in size, viewpoint or exemplar. Lateral occipital and posterior inferior temporal cortex showed lower activity for repetitions of both real and non-sense objects; fusiform and left inferior frontal regions showed decreases for repetitions of only real objects. Repetition of different exemplars with the same name affected only the left inferior frontal cortex. Crucially, priming-induced decreases in activity of the right fusiform cortex depended on whether the three-dimensional objects were repeated with the same viewpoint, regardless of whether retinal image size changed; left fusiform decreases were independent of both viewpoint and size. These data show that dissociable subsystems in ventral visual cortex maintain distinct view-dependent and view-invariant object representations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn839 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!