Glycolysis and proteases as targets for the design of new anti-trypanosome drugs.

Curr Top Med Chem

Groupe Chimie Organique Biologique, Laboratoire de Synth se et Physicochimie de Mol cules d Int r t Biologique, UMR-CNRS 5068, Universit Paul Sabatier, Toulouse, France.

Published: May 2002

Glycolysis is considered as a promising target for new drugs against parasitic trypanosomatid protozoa, because this pathway plays an essential role in their ATP supply. Trypanosomatid glycolysis is unique in that it is compartmentalised, and many of its enzymes display specific structural and kinetic features. Structure- and catalytic mechanism-based approaches are applied to design compounds that inhibit the glycolytic enzymes of the parasites without affecting the corresponding proteins of the human host. For some trypanosomatid enzymes, potent and selective inhibitors have already been developed that affect only the growth of cultured trypanosomatids, and not mammalian cells. Examples are developed concerning all enzymes in the hexoses part with also others concerning glyceraldehyde-phosphate dehydrogenase and pyruvate-kinase for the trioses part. Concerning cysteine protease inhibitor development, a great number of irreversible alkylating agents have shown their efficacy towards the active site cysteine of parasite proteases. This includes fluoromethylketones, epoxides, diazomethylketones, vinylsulfones to mention a few. These functional groups are activated electrophiles that react with the nucleophilic cysteine of the active site and are generally quite selective for cysteine versus serine. They are thought to be also reactive to numerous other nucleophiles in the body, especially other thiols. This potentially hampering property seems not to be detrimental for two reasons: first a recent report has shown that cysteine protease inhibitors containing a vinylsulfone electrophile are unreactive towards thiols such as glutathione and can be considered to be inert in the absence of catalytic machinery. Secondly, irreversible inhibitors are shown to be less toxic than presumed in the parasite treatment, owing to some bioselectivity displayed by the parasite itself.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026024607472DOI Listing

Publication Analysis

Top Keywords

cysteine protease
8
active site
8
cysteine
5
glycolysis proteases
4
proteases targets
4
targets design
4
design anti-trypanosome
4
anti-trypanosome drugs
4
drugs glycolysis
4
glycolysis considered
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory of Neurobiology, Department of Neurology, Poznan, Poland.

Background: Alzheimer's disease (AD) is characterized by an acquired, progressive impairment of cognitive functions. The pathogenesis of this disease remains unknown. It is explained based on the following theories: amyloid cascade, inflammation, vascular, and infection hypothesis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Zoology, University of Lucknow, Lucknow, India.

Background: Various investigations have elucidated the impact of diet and environmental toxins on the aging process. Melamine (Mel) is a widely recognized and infamous food adulterant with documented toxicity in various organs, including the brain. Nevertheless, there is currently a dearth of reports on the neurotoxic effects of Mel in aging neurons.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Miami Project to Cure Paralysis, Miami, FL, USA.

Background: Stroke and AD patients with gut complications often present worsened neurological outcomes. The goal of this study was to examine the role of extracellular vesicle (EV)-mediated pyroptosis in the bi-directional gut-brain axis after photothrombotic stroke (PTS) in aged 3xTg mice and wildtype (WT) controls.

Method: Twelve-month 3xTg and WT male and female mice underwent PTS using a YAG laser.

View Article and Find Full Text PDF

Cryptosporidiosis is an infection induced by the single-celled protozoan Cryptosporidium parasite. This parasite commonly infects the intestines of humans and animals, leading to gastrointestinal symptoms such as diarrhea, stomach cramps, nausea, and vomiting. Cryptopain protein, a type of cysteine protease found in the genome of plays an important role in cell invasion and its survival.

View Article and Find Full Text PDF

Variants of SARS-CoV-2 have continued to emerge across the world and cause hundreds of deaths each week. Due to the limited efficacy of vaccines against SARS-CoV-2 and resistance to current therapies, additional anti-viral therapeutics with pan-coronavirus activity are of high interest. Here, we screen 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!